{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "Untitled102.ipynb", "provenance": [], "authorship_tag": "ABX9TyND+hcfb92pBaAi7AxLcdoy", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "source": [ "# Uncertainty" ], "metadata": { "id": "z2wSVGyv6lCe" } }, { "cell_type": "markdown", "source": [ "Uncertainty is one of the most important topics in statistics. Visualizing that uncertainty is very critical to expressing these statistical ideas. We'll explore several ways to display this crutical concept." ], "metadata": { "id": "xI8gVGSu6n7r" } }, { "cell_type": "markdown", "source": [ "## Waffle Charts" ], "metadata": { "id": "2DdA6XyabjhS" } }, { "cell_type": "markdown", "source": [ "### With Random Chance" ], "metadata": { "id": "CNSSnaEPbmaa" } }, { "cell_type": "code", "source": [ "import numpy as np\n", "\n", "\n", "truths = np.random.binomial(1,.25,25)\n", "\n", "truths" ], "metadata": { "id": "JequsmoeI_EZ", "outputId": "31e4578e-b76a-4a3f-c2f4-cbdb4dcde4ca", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": 4, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,\n", " 0, 0, 1])" ] }, "metadata": {}, "execution_count": 4 } ] }, { "cell_type": "code", "source": [ "import matplotlib.pyplot as plt\n", "from matplotlib.patches import Rectangle\n", "\n", "fig, axs = plt.subplots(5, 5, constrained_layout=True, figsize=(2, 2))\n", "\n", "\n", "def hatches_plot(ax,h):\n", " ax.add_patch(Rectangle((0, 0), 1, 1, fill=h))\n", " ax.axis('equal')\n", " ax.axis('off')\n", "\n", "for ax, h in zip(axs.flat,truths):\n", " hatches_plot(ax,h)\n", "\n", "fig.suptitle('25% Chance')\n", "\n", "plt.show()" ], "metadata": { "id": "g-1ZBUqcHKlG", "outputId": "3a457c17-4649-4a1a-c3e8-33bc27407fe0", "colab": { "base_uri": "https://localhost:8080/", "height": 169 } }, "execution_count": 5, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJgAAACYCAYAAAAYwiAhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAGR0lEQVR4nO3dXYhcdx2H8eebxErU1GALsaWapaZNim/Ftsa3GxF8q3oTiq1eiBeiQmiLRqz19UYpKF6IIlJLBYtB40uFFi30oqUXLdr6UpoqSO2m1SbFiE03+Fbk78U5C8d1dzOz29/O7Ob5wMDsnJn5nznn2XNmljN70lpDqrJp0jOgjc3AVMrAVMrAVMrAVMrAVMrAVijJTJKWZMuk52WaTXVgSZ6b5KYkR5LMJflNkncMps+v5JODy2cH0z+R5HiSw0leObj9jUluHWH8C5Mc6p/jRJIHk3wsyeZn/9VuUK21qb0Azwe+AMzQ/TK8C5gDZvrpM0ADtizy2HOA3wNnAvuB2/rbtwD3zT/HMmO/DPgb8FXgnP623cD3gO3Lje1lsBwnPQNjzzA8COzrry8X2F7gYH99D/Bwf/0AcP0I49wC3L7M9PmxPwA8BhwHPj2Y/lrgXuAp4CjwdeCMwfQGfAT4Q3+fbwAZTP8Q8Lv+F+ph4DX97ecCPwL+AjwKXD3pdbJhAgN2AP8E9ixYyX8G/gTcDJzdTzsLeKjf2uwHDgEvAe4fruhlxjoGfHCEwG4EtgKvBv4FXNRPvwR4Xb/FnOljuXZBYLf18/fSPpi399Ou6F/TZUCAXcBOuq34A8DngDOA84E/Am+b9LpZ94EBzwHuBL41uO0FwKX9StwB/BC4YzD9KuBXwM/6FfRj4C3Ae4G7gZ8C5y0x3jPzK/wUgZ03uO0XwJVL3P9a4CcLAnvT4OcfANf11+8ArlnkOfYCjy247VPAzZNeP0td1sUnoCSbgO8C/6bbGgHQWjtJt0UCeDLJfuBokm2ttbnW2kHgYP8cl9NtYX4N/BZ4OfAe4CvAlYsM+1e693Gncmxw/e900ZPkQrr3b5cCz6P7JXhglMfSbWkfWWSsncC5SZ4a3LYZuGeE+ZyIqf4UCZAkwE10W6h9rbVnlrn7/KEh//O6kmwFvgR8HLgAeLy19jTwS+BVSzzXncC+Vcz6N+k+ZFzQWjsTuJ5udzeKx+k+ZCx2+6Otte2Dy7bW2jtXMZ+lpj4wuhV1EfDu1to/hhOS7E2yO8mmJGcBXwPuaq2dWPAcnwG+01p7gu4N+e4kO4A3072HWczngTck+XKSF/fj7UpyS5LtI8z3NuBp4GSSPcBHR3u5AHwbOJDkknR2JdlJtwueS/LJJFuTbE7yiiSXjfHca2qqA+sX6oeBi4Fjg791vb+/y/nAz+k+aT1Etwu8asFz7AHeShcfrbWjwA3AYeBquvcw/6e19gjwerr3WoeTnKD79HZ/P96pHADe19/3RuD7I73obuxDwBfp/iQyB9wKvKi19h+6P9VcTPcJ8jhdjC8c9bnXWvo3ilKJqd6Caf0zMJUyMJUyMJUyMJUyMJUyMJUyMJUyMJUyMJUyMJUyMJUyMJUyMJUa+ZDpJLN0h+yu1JHW2sw4D5i57vZVHUs0e8Plox5BOtExJ7Fs12rMcY7J39laG3vhzUvigWdLm8SyXZMx3UWqlIGplIGplIGplIGplIGplIGplIGplIGplIGplIGplIGplIGplIGplIGplP8fTKXcgqmUgamUgamUgamUgamUganWGOcKmqU7k8ZKL7MrOD+RY67zMUf+O1iSttrv0Y37eMdc/2O6i1QpA1MpA1MpA1MpA1MpA1MpA1MpA1MpA1MpA1MpA1MpA1MpA1MpA1Opcf6N+ZFV/ivyIyt5jGOu7zH9XqRKuYtUKQNTKQNTKQNTKQNTKQNTqak+X+Tpco7Kjbxsp/18kafLOSo37LJ1F6lSBqZSBqZSBqZSBqZSBqZSBqZSBqZSBqZSBqZSBqZSBqZSBqZSBqZSfi9ygZUcz/Us2LDL1u9FqpS7SJUyMJUyMJUyMJUyMJUyMNWatvMLOubGGtPzRTpm6ZjuIlXKwFTKwFTKwFTKwFTKwFTKwFTKwFTKwFTKwFTKwFTKwFTKwFTKwFTK70U6ZumYfi9SpdxFqpSBqZSBqZSBqZSBqZSBqdRUny/SczfWjblWy3bazxc5CRv23I2T4C5SpQxMpQxMpQxMpQxMpQxMpQxMpQxMpQxMpQxMpQxMpQxMpQxMpQxMpcb5N+azrPExS5NwuhwPtlb8XqRKuYtUKQNTKQNTKQNTKQNTKQNTqf8CzXZv5vP5PBcAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "markdown", "source": [ "### With Package" ], "metadata": { "id": "0h2onFyzbrn3" } }, { "cell_type": "code", "source": [ "!pip install pywaffle" ], "metadata": { "id": "bK3nuBz-btsH", "outputId": "e64e2649-7bb8-4799-c0fa-d3e5668421db", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": 3, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting pywaffle\n", " Downloading pywaffle-0.6.4-py2.py3-none-any.whl (565 kB)\n", "\u001b[?25l\r\u001b[K |▋ | 10 kB 21.6 MB/s eta 0:00:01\r\u001b[K |█▏ | 20 kB 11.3 MB/s eta 0:00:01\r\u001b[K |█▊ | 30 kB 8.8 MB/s eta 0:00:01\r\u001b[K |██▎ | 40 kB 7.9 MB/s eta 0:00:01\r\u001b[K |███ | 51 kB 6.0 MB/s eta 0:00:01\r\u001b[K |███▌ | 61 kB 7.1 MB/s eta 0:00:01\r\u001b[K |████ | 71 kB 6.6 MB/s eta 0:00:01\r\u001b[K |████▋ | 81 kB 6.5 MB/s eta 0:00:01\r\u001b[K |█████▏ | 92 kB 7.3 MB/s eta 0:00:01\r\u001b[K |█████▉ | 102 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████▍ | 112 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████ | 122 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████▌ | 133 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████ | 143 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████▊ | 153 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████▎ | 163 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████▉ | 174 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████▍ | 184 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████ | 194 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████▋ | 204 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████▏ | 215 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████▊ | 225 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████████▎ | 235 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████ | 245 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████▌ | 256 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████ | 266 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████▋ | 276 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████████▏ | 286 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████████▉ | 296 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████████████▍ | 307 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████████ | 317 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████████▌ | 327 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████████ | 337 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████████▊ | 348 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 358 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████████████▉ | 368 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████▍ | 378 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████ | 389 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████▋ | 399 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████▏ | 409 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████▊ | 419 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 430 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████████ | 440 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▌ | 450 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████ | 460 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▋ | 471 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▏ | 481 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▉ | 491 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▍ | 501 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████ | 512 kB 7.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▌ | 522 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▏ | 532 kB 7.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▊ | 542 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▎| 552 kB 7.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▉| 563 kB 7.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 565 kB 7.0 MB/s \n", "\u001b[?25hRequirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from pywaffle) (3.2.2)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->pywaffle) (1.4.2)\n", "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->pywaffle) (3.0.8)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->pywaffle) (0.11.0)\n", "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->pywaffle) (2.8.2)\n", "Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.7/dist-packages (from matplotlib->pywaffle) (1.21.6)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib->pywaffle) (4.2.0)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplotlib->pywaffle) (1.15.0)\n", "Installing collected packages: pywaffle\n", "Successfully installed pywaffle-0.6.4\n" ] } ] }, { "cell_type": "code", "source": [ "from pywaffle import Waffle\n", "\n", "fig = plt.figure(\n", " FigureClass=Waffle, \n", " rows=5, \n", " columns=10, \n", " values=[48, 46, 6],\n", " figsize=(5, 3)\n", ")\n", "plt.show()" ], "metadata": { "id": "WlnLx72Lb03u", "outputId": "840dcfac-2b28-4b87-dcc8-a62426308d5b", "colab": { "base_uri": "https://localhost:8080/", "height": 197 } }, "execution_count": 7, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAC0CAYAAACqufbBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAEzUlEQVR4nO3YsW0yTRiF0dkf92AX4tSNkDhw4JxCyAkInLgRUhdiirD2ixz88rJMwtxX4pxwCOZqkB4hpnmeGwDj/ZceAHCvBBggRIABQgQYIESAAUIe1j58P31+t9YeB235dT68bJ8KbKmyY3FLlR2ttfazf4ts2eyO/9tSZUdoS5UdlbYs7th/fA1/k93r87R0fu0X8Ogvbu3O0Vuq7Lh0Z5Uda+e35E367vMm/efD+QsCIESAAUIEGCBEgAFCBBggRIABQgQYIESAAUIEGCBEgAFCBBggRIABQgQYIESAAUIEGCBEgAFCBBggRIABQgQYIESAAUIEGCBEgAFCBBggRIABQgQYIESAAUIEGCDkWoDPQ1b03Tl6S5Udl+6ssmPt/Ja8Sd993qT/fLhpnuf0BoC75C8IgBABBggRYIAQAQYIeVj78P30+d1aexy05df58LJ9KrClyo7FLVV2VNrys3+L7Njsjn/eJLClyo5KWxZ37D++hr/J7vV5Wjq/9gt49Be3dufoLVV2XLqzyo6181vyJn33eZP+8+H8BQEQIsAAIQIMECLAACECDBAiwAAhAgwQIsAAIQIMECLAACECDBAiwAAhAgwQIsAAIQIMECLAACECDBAiwAAhAgwQIsAAIQIMECLAACECDBAiwAAhAgwQIsAAIQIMEHItwOchK/ruHL2lyo5Ld1bZsXZ+S96k7z5v0n8+3DTPc3oDwF3yFwRAiAADhAgwQMjD2ofvp8/v1trjoC2/zoeX7VOBLVV2LG6psqPSlp/9W2THZnf88yaBLVV2VNqyuGP/8TX8TXavz9PS+bVfwKO/uLU7R2+psuPSnVV2rJ3fkjfpu8+b9J8P5y8IgBABBggRYIAQAQYIEWCAEAEGCBFggBABBggRYIAQAQYIEWCAEAEGCBFggBABBggRYIAQAQYIEWCAEAEGCBFggBABBggRYIAQAQYIEWCAEAEGCBFggBABBggRYICQawE+D1nRd+foLVV2XLqzyo6181vyJn33eZP+8+GmeZ7TGwDukr8gAEIEGCBEgAFCBBgg5GHtw/fT53dr7XHQll/nw8v2qcCWKjsWt1TZUWnLz/4tsmOzO/55k8CWKjsqbamyo212x2np/Nov4NFf3Nqdo7dU2XHpzio71s5vyZv03edN+s+H8xcEQIgAA4QIMECIAAOECDBAiAADhAgwQIgAA4QIMECIAAOECDBAiAADhAgwQIgAA4QIMECIAAOECDBAiAADhAgwQIgAA4QIMECIAAOECDBAiAADhAgwQIgAA4RcC/B5yIq+O0dvqbLj0p1Vdqyd35I36bvPm/SfDzfN85zeAHCX/AUBECLAACECDBAiwAAhD2sfvp8+v1trj4O2/DofXrZPBbZU2bG4pcqOSlt+9m+RHZvd8c+bBLZU2VFpS5UdbbM7Tkvn134Bj/7i1u4cvaXKjkt3Vtmxdn5L3qTvPm/Sfz6cvyAAQgQYIESAAUIEGCBEgAFCBBggRIABQgQYIESAAUIEGCBEgAFCBBggRIABQgQYIESAAUIEGCBEgAFCBBggRIABQgQYIESAAUIEGCBEgAFCBBggRIABQgQYIESAAUKmeZ7TGwDukl/AACECDBAiwAAhAgwQIsAAIQIMEPIPMQVWHzyywAQAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "markdown", "source": [ "`pywaffle` is actually a pretty cool package for doing this sort of graphic! For my 25% chance above, I'd do something like:" ], "metadata": { "id": "i6OxkHKQb8sn" } }, { "cell_type": "code", "source": [ "plt.figure(FigureClass = Waffle,\n", " rows= 5,\n", " columns = 5,\n", " values = [5,20],\n", " colors = ['blue','white'],\n", " vertical = True,\n", " facecolor='#DDDDDD' )\n", "plt.show()" ], "metadata": { "id": "dCilhhvmcKj3", "outputId": "1b479968-a22c-4b62-da96-b28f66f36d29", "colab": { "base_uri": "https://localhost:8080/", "height": 297 } }, "execution_count": 15, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAARgAAAEYCAYAAACHjumMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAFFElEQVR4nO3XsW2lWhhG0eMnSpiYNqb/cIqAgHhKQPJrwDoi8B4DWiu8l+D/ki342LbtcwAE/vvpA4D3EhggIzBARmCAjMAAmWX257quY1mmj9zSeZ7jOI7pM7bdz5VtYzxz35u3jTHGvu9f/j59g3ni0DGu3W3b/Vy9+4n73rxtxicSkBEYICMwQEZggIzAABmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAGYEBMgIDZAQGyAgMkBEYICMwQEZggIzAABmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAzDQw53n+qzu+1ZW7bbufq3c/cd+bt818bNv2+dNHAO/kEwnICAyQERggIzBARmCAjMAAGYEBMgIDZJbZn+u6jmWZPnJL53mO4zimz9h2P1e2jfHMfW/eNsYY+75/+fv0DeaJQ8e4drdt93P17ifue/O2GZ9IQEZggIzAABmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAGYEBMgIDZAQGyAgMkBEYICMwQEZggIzAABmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAmWlgzvP8V3d8qyt323Y/V+9+4r43b5v52Lbt86ePAN7JJxKQERggIzBARmCAjMAAGYEBMgIDZAQGyCyzP9d1HcsyfeSWzvMcx3FMn7Htfq5sG+OZ+968bYwx9n3/8vfpG8wTh45x7W7b7ufq3U/c9+ZtMz6RgIzAABmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAGYEBMgIDZAQGyAgMkBEYICMwQEZggIzAABmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAGYEBMgIDZKaBOc/zX93xra7cbdv9XL37ifvevG3mY9u2z58+Angnn0hARmCAjMAAGYEBMgIDZAQGyAgMkFlmf67rOpZl+sgtnec5juOYPmPb/VzZNsYz97152xhj7Pv+5e/TN5gnDh3j2t223c/Vu5+4783bZnwiARmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAGYEBMgIDZAQGyAgMkBEYICMwQEZggIzAABmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAGYEBMgIDZAQGyEwDc57nv7rjW12527b7uXr3E/e9edvMx7Ztnz99BPBOPpGAjMAAGYEBMgIDZAQGyAgMkBEYILPM/vz9ex1//04fuaVfv87x588xfca2+7mybYxn7nvztjHG2Lb9y9+nbzBPHDrGtbttu5+rdz9x35u3zfhEAjICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAGYEBMgIDZAQGyAgMkBEYICMwQEZggIzAABmBATICA2QEBsgIDJARGCAjMEBGYICMwAAZgQEyAgNkBAbICAyQERggIzBARmCAjMAAGYEBMgIDZAQGyAgMkPnYtu3zp48A3skbDJARGCAjMEBGYICMwAAZgQEy/wP3wB2EnyU7bQAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "The package has lots of options to include some really cool graphics. Here is how many times I biked versus driving this week." ], "metadata": { "id": "lu1xvp3leDT0" } }, { "cell_type": "code", "source": [ "plt.figure(FigureClass=Waffle,\n", " rows = 5,\n", " values = [2,3],\n", " icons = ['bicycle','car'])\n", "\n", "plt.show()" ], "metadata": { "id": "6KZSPOeldi6P", "outputId": "f52fc6ea-04e5-48d7-fd6b-f13836a831d9", "colab": { "base_uri": "https://localhost:8080/", "height": 297 } }, "execution_count": 17, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAADsAAAEYCAYAAADiao6fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAH+klEQVR4nO2ceawdVR3HP48BogWh5pW9kCCJxiiUsLTBZCISISRQTRPLMkSguZqBlsVcEApGWwKuvFzaNIADGYLFjIa1LP7hligjaATCTtgaC2opaNkarLbOe/5xznjn3d7lzMy9BX7v90leeufMzDnn0zdnzpnb+XZsamqKmcIu73cHdiYqKxWVlYrKSkVlpaKyUlFZqaisVFRWKiorFZWVispKRWWlorJSUVmpqKxUdq1zctZqHA5cAhwHfKJPfduB9cAfgAmvGb9Qp92qjFX9x+is1bgUuLbCqZPAMq8Z/7hSwzWoJJu1GucBN9Zs+yyvGSc16yhFadms1ZgDvATMLhQ/DvwG+FeP0/YETgIOL5S9DnzSa8bvlupADaqM2fOYLrrGa8YXDTopazXGgFuAc23RfsASYHWFPlSi1N04azV2BcJC0d8xN6iBeM14ClgK/LNQvDRrNXbajDDwMs5ajZeBw3rsvsprxivLNJi1Gt8HlvfY/aTXjI8sU18ZXC7jf/fZtz5rNY4v2ebzFduqjYvsCmAxcHqXfWuH1I8p4GfAz4dUX1cGjhevGd8FvDHKTgBjwN+8Znz/SBtxGLMe8DZm+gC4FdgIfA3Yt2K7m4AYOAT4qi17Gxj3mvFkxToH4nIZH0Rb9E6vGS8ByFqNG4CHMR0uw1+Az3nNeJOtZ09gEWY6mwu8WrI+Z1xu+8Vj/pp/8Jqx87TTwSW5qOWVkv2pTNlFxRlZq7EWeAbYHRiv0OacrNWYBWwDjgDOrFBHJVxk/4G5W44BB2CWhnW4yf50MsmIb4Qud+P3gN+OshOWX3nNuNfaeii4jpGJUXbCsmrUDbiO2f/0KL+qYrsrSrQxNGp9U1F2XZyTtRrdZEeO62Xc7ZmzznPoli5l79SozwlX2Scw6+DtdnsL8M0a7S6nLbwd85z7RI36nKj8HdSHkRn1VarKSkVlpaKyUlFZqaisVFRWKiorFZWVispKRWWlorJSUVmpqKxUVFYqKiuVGSWr6Q8XNP1RDk1/jBJNf/RC0x+a/uiLpj/Q9MeQG9H0x3Q0/aHpDzc0/YGmP4aLpj+6oOkPTX+4oemPGvU5oekPqaisVFRWKiorFZWVispKRWWlorJSUVmpqKxUVFYqKisVlZWKykpFZaWislJRWalo1MUFjbqUQ6Muo0SjLr3QqItGXfqiURc06jLkRjTqMh2NumjUxQ2NuqBRl+GiUZcuaNRFoy5uaNSlRn1OaNRFKiorFZWVispKRWWlorJSUVmpqKxUVFYqKisVlZWKykpFZaWislJRWamorFRmlGytdyoGEabJbOB2pr/juAFoRH6weZRtd2OkssCRwIkdZfOArezEN9tyar1mEKaJD5wN7Nax64+RH0T2N3snMMeWz6X9CuDCyA8eqNx4BerKvgoc3GXXZOQHXpfjjwMewr5fDHwm8oMPdPqjyD3AMqBTbJcwTTb0OGfSHj8X+CFwfs0+ODO0t2XCNPk63V/AHMTnIz94cCidGEBl2TBNPGAq8oPJME0OBp4FPga8CdzW47SDgK90lL0IzIv8YKRhCCgpG6bJgUAT+BImaLgVeArYC/isPeycyA+6BiXCNFkHfNluvgB8yn5+EDgQM/63Ay8D9wJrhjlFOcuGaXI65k20WX0OewRYEPnBDpWGabIIuNtu/hk4GRNz6/eC9jvA2ZEf3OfUyQE4raDCNFmMiaHkohuBdZi//SJHAcd3OX8vYI3dzDCpr4XsKHoP8GvgLbu9N7AuTJOFLv0cxEDZME32xfxGAf4LXA4cEvnBIsz0UcQD7gjT5ICO8u9ixivAdZiIWreU5n2RH5wE7A9cg7lzjwFrwzT5+GCd/rj8Zi+inf5YEfnBjyI/yMI0WYDJ1oF5yfIb9vM4EOQnh2kyHzM9gUl2rLTH5lfJBO105kSYJuORH2yL/ODbwPds+exCW5Vxkc0voc3YcHCYJrthppkxu28ZcD0mJgpwWo/jlkZ+8B5wit3eCFxJ+yXtcczcm3M1Ju8DcKqTUR9cZPPQ4WORH+Sv4F6ISW7kPIS5i+5nt+eHaTKFSXjMs2V3RH7wC/s5zwI9betcBTxnyxphmhwDEPnBNuBRW36om1JvXGTHupSdULKdd2lf5mDSJGDuAblUfplO0h42Q8VFNg8ZHW0vS4DLMDeYnxR+7iqcs6FQHmMW/RsL+9fbP+fbxQmRH/we+AJmvfw7+P8wONYe+5KzVQ9c1sYPAJ/GjKflwNWRHzxHxw0jTJNiQuQ7kR/0WkWBmbKOAPYBLsWO01yywErM9JP3oxYusquBC4CPAivCNAH4QT5+wzSZBXyLdlRtE+aBvR8TwDmYsXuNrXMi8oPM1vkR4Ar7A2berbLunobTCipMk7OAnxaKNgOPYW5KC2g/r24FToj84E8OdX4Rs4Ao1vkwsAfmPwLYx5ZPAYsiP+hcwJSmzHLxTOBm25luvAYsifzgl66Nh2lyGmbB0qvOLcC5kR/c3WN/Kco+COyPWWScSvtB4BnMf9uwys6hpbCrrYsx8/mhmLvxeswYXR35wdDyeZr+kIrKSkVlpaKyUlFZqaisVFRWKiorFZWVispKRWWlorJSUVmpqKxUVFYqKisVlZWKRl2GiEZd7GeNuowSjbpUQaMuO6JRFzTqAmjUpToadelAoy5o1EWjLqBRF0CjLtNYiUZdqqFRlx6d06gLGnX5YDKjvkpVWamorFRUViozSvZ/QahMJX+qqZ8AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "markdown", "source": [ "## Error Bars for Mean" ], "metadata": { "id": "q3ws6HY065Xe" } }, { "cell_type": "markdown", "source": [ "Perhaps the most fundamental concept in error is the mean. We know that the mean will be approximately distributed as normal for a large enough sample size with standard deviation $\\frac s{\\sqrt n}$ where $s$ is the sample standard deviation and $n$ the sample size. Let's see that visualized in a bar graph." ], "metadata": { "id": "xglswNA76-Cq" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 371 }, "id": "GkYz6MMH6kQ7", "outputId": "c967a726-e616-4d73-d0aa-62c51400b370" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 9 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAFQCAYAAACWOTQoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAagUlEQVR4nO3deZhkdX3v8ffHYZNFiHE0CgguiCsgjlwX1BEljysagwsuRKKSxRg1cQmJ3kgSLxpvvBhZdERAjYorasC4IhdwwxlABIHnKg5hlcGNAVS27/3jnJai6ek+PXRXnep6v56nnqk6W327quszv/7V7/xOqgpJUn/dZdQFSJJmZ1BLUs8Z1JLUcwa1JPWcQS1JPWdQS1LPGdRaMGkcl+QXSc4cdT3TJTk1ySsX8Hhrkzx1oY43z+c+P8nKjdz3CUkuWuCStIgM6jHSBsOvk1w3cDti1HUN2BvYF9ihqvaavjLJZkn+Lcllbe1rkxw+sH5kwbfQkhyf5MYk69vbeUkOS7LtQhy/qh5WVad2rKWSPHBg39OrateFqEPDYVCPn2dX1dYDt7+aaaMkm8ywbNl8nmi+2wM7AWur6voNrD8EWAHsBWwDrATOmudzDN1Mr2VH/1pV2wDLgYOAxwDfTLLVghWniWBQLxFJXp7km0n+T5KfAW9rW3VHJ/likuuBJyd5SNsF8Mv2z+f9Bo5xh+1neJ77JPlCkp8n+VGSV7XLXwEcAzy2bS0fOkOZjwZOrKorqrG2qj7c7v8R4L7Af7b7v6ld/qkkVyX5VZLTkjxsWr1HJjm5bbV+N8kDBtbvm+TCdt8jgAyse0CSU5L8LMk1ST6aZLuB9WuTvDnJucD1STZJ8rIkl7T7/EPX96aqflNV3wP2A36fJrSnnudPk1zQdhd9OclO7fKjk/zvaa/955P8zUB9T23v75Xk2+17emWSI5Js1q47rd39++3r+sIkK5NcNnDcuX4nNvgaa0iqytuY3IC1wFM3sO7lwM3Aa4BNgLsCxwO/Ah5P85/yNsCPgL8HNgP2AdYDu7bHmL79FjM8z2nAUcAWwB7AOmCfgRrOmKX+twD/Dfwl8Aggc/18wJ+2dW8OHA6cM7DueOBnNC30TYCPAie06+7R/mz7A5sCr29fn1e26x9I002zOU2L9zTg8Gm1nAPs2L6WDwWuA57Y7vPu9ngbej+OB/5lhuUfBj7R3n9O+348pK3/LcC32nVPBC6deo2A3wN+Ddxn+msFPIqmtb4JsDNwAfC6gecs4IEDj1cCl7X3N+3wOzHja+xteDdb1OPnc23LZ+r2qoF1V1TVe6vq5qr6dbvs81X1zaq6lSZYtwbeUVU3VtUpwEnAAQPH+N32VfWbwSdOsiNNiL+5mlbiOTSt6AM71n4Y8E7gJcBq4PIkfzLbDlV1bFWtr6rfAm8Ddp/Wz3tiVZ1ZVTfThMge7fJnAOdX1aer6iaakL9q4Lg/qqqvVtVvq2odTfA+adrT/3tVXdq+lvsDJ1XVaW0tbwVu7fhzD7oCuHt7/8+Bw6rqgrb+/wXs0baqT6cJ2Ce02+4PfLuqrpjhNVpTVd9p3/e1wPtn+Fk25DHM/TuxoddYQ2JQj5/nVtV2A7cPDKy7dIbtB5fdB7i0De0plwDbz3GMwf1/XlXrZ9l/g6rqlqo6sqoeD2wHvB04NslDZto+ybIk70jy4yTX0rQioWktT7lq4P4NNKEzVevvfpaqqsHHSe6V5IQkl7fH/o9px4UZXruB411P09Kcr+2Bn7f3dwLeM/Wfbrs8wPZtvSdwW2C+mCYk7yDJg5Kc1HYRXUsT+NN/lg3p8juxoddYQ2JQLy0zTYU4uOwKYMckg+/7fYHL5zjG4P53T7LNLPt3K7Tq11V1JPALmm6FmZ77xTTdA08FtqX5sx4G+ppncSVNt0WzQ5LBxzRhVsAjqupuwEtnOO5gPdOPtyVNf3NnSbam+VlObxddCvzZtP9471pV32rXfxzYv21h/w/gMxs49NHAhcAu7c/y9zP8LBvS5XdCI2ZQT5bv0rSI3pRk0zTjcJ9N03KbU1VdCnwLOCzJFkl2A15B0xqdU5LXtV9k3bX9cu5PaPqfz243+Slw/4FdtgF+S9Ny3ZImXLs6GXhYkuelGbXx18AfTDv2dcCvkmwPvHGO430aeFaSvdsv6v6Jjp+fJJsneRTwOZr/mI5rV70POGTqC9Ik2yZ5/tR+VXU2cA1N99KXq+qXG3iKbYBrgeuSPBj4i2nrp7+ug+7U74SGw6AeP1OjIqZuJ3bdsapupPkQPp0mAI4CDqyqC+fx/AfQtGyvAE4E/rGqvtZx3xuAf6P5U/oa4NXAH1fVxe36w4C3tF0Bb6D54u0SmtbdD4HvdC2yqq4Bng+8gybodwG+ObDJocCeNF+engx8do7jnd/W+zGa1vUvgMtm24cm/Na3z/9hYA3wuLbbhKo6kabP/oS2y+I8mvdm0MdoWuEfm+V53kDz18d64APAJ6atfxvwofZ1fcG0n2shfie0yKa+UZYk9ZQtaknqOYNaknrOoJaknjOoJannDGpJ6rmNnRVsVve4xz1q5513XoxDS9KStGbNmmuqavlM6xYlqHfeeWdWr169GIeWpCUpySUbWmfXhyT1nEEtST1nUEtSzxnUktRzBrUk9ZxBLUk9Z1BLUs8Z1JLUcwa1pLGwcuVKVq5cOeoyRsKglqSeM6glqefmDOokuyY5Z+B2bZLXDaM4SVKHSZmq6iJgD4Aky2guNNr5gqqSpDtnvl0fTwF+XFUbnOVJkrSw5hvULwI+vhiFSJJm1jmok2wG7Ad8agPrD06yOsnqdevWLVR9kjTx5tOifjpwVlX9dKaVVbWqqlZU1Yrly2e8SIEkaSPMJ6gPwG4PSRq6TkGdZCtgX+Czi1uOJGm6TtdMrKrrgd9f5FokSTPwzERJ6jmDWpJ6zqCWpJ4zqCWp5wxqSeo5g1qSes6glqSe6zSOWpJmkizd56wazvN0YYtaknrOoJaknjOoJannDGpNjJUrV7Jy5cpRlyHNm0EtST1nUEtSzxnUktRzBrUk9ZxBLUk9Z1BLUs8Z1JLUcwa1JPVc16uQb5fk00kuTHJBkscudmGSpEbX2fPeA3ypqvZPshmw5SLWJEkaMGdQJ9kWeCLwcoCquhG4cXHLkiRN6dL1cT9gHXBckrOTHJNkq0WuS5LU6hLUmwB7AkdX1SOB64G/m75RkoOTrE6yet26dQtcpiRNri591JcBl1XVd9vHn2aGoK6qVcAqgBUrVvTo2gjqtaV8iRDo12VCxt6poy5gZOZsUVfVVcClSXZtFz0F+OGiViVJ+p2uoz5eA3y0HfFxMXDQ4pUkSRrUKair6hxgxSLXIkmagWcmSlLPGdSS1HMGtST1nEEtST1nUEtSzxnUktRzBrUk9ZxBLUk9Z1BLUs8Z1JLUcwa1JPVc10mZpLF36qgLkDaSLWpJ6jmDeh5WrlzJypUrR12GpAljUEtSzxnUktRzBrUk9ZxBLUk9Z1BLUs91GkedZC2wHrgFuLmqvH6iJA3JfE54eXJVXbNolUiSZmTXhyT1XNegLuArSdYkOXgxC5Ik3V7Xro+9q+ryJPcEvprkwqo6bXCDNsAPBrjvfe+7wGVu2KE5dGjPtZa1Q3/Of6x/HNpzSeqnTi3qqrq8/fdq4ERgrxm2WVVVK6pqxfLlyxe2SkmaYHMGdZKtkmwzdR/4Q+C8xS5MktTo0vVxL+DEJFPbf6yqvrSoVUmSfmfOoK6qi4Hdh1CLJGkGDs+TpJ4zqCWp5wxqSeo5g1qSes6glqSe8yrk83AQB426BEkTyBa1JPWcQS1JPWdQS1LPGdSS1HMGtST1nEEtST1nUEtSzxnUktRzBrUk9ZxBLUk9Z1BLUs8Z1JLUcwa1JPWcQS1JPdc5qJMsS3J2kpMWsyBJ0u3Np0X9WuCCxSpEkjSzTkGdZAfgmcAxi1uOJGm6ri3qw4E3AbcuYi2SpBnMGdRJngVcXVVr5tju4CSrk6xet27dghUoSZOuS4v68cB+SdYCJwD7JPmP6RtV1aqqWlFVK5YvX77AZUrS5JozqKvqkKraoap2Bl4EnFJVL130yiRJgOOoJan3NpnPxlV1KnDqolQiSZqRLWpJ6jmDWpJ6zqCWpJ4zqCWp5wxqSeo5g1qSes6glqSeM6glqecMaknqOYNaknrOoJaknjOoJannDGpJ6jmDWpJ6zqCWpJ4zqCWp5wxqSeo5g1qSes6glqSeM6glqefmDOokWyQ5M8n3k5yf5NBhFCZJanS5CvlvgX2q6rokmwJnJPmvqvrOItcmSaJDUFdVAde1Dzdtb7WYRUmSbtOpjzrJsiTnAFcDX62q7y5uWZKkKZ2Cuqpuqao9gB2AvZI8fPo2SQ5OsjrJ6nXr1i10nZI0seY16qOqfgl8A3jaDOtWVdWKqlqxfPnyhapPkiZel1Efy5Ns196/K7AvcOFiFyZJanQZ9XFv4ENJltEE+yer6qTFLUuSNKXLqI9zgUcOoRZJ0gw8M1GSes6glqSeM6glqecMaknqOYNaknrOoJaknjOoJannDGpJ6jmDWpJ6zqCWpJ4zqCWp5wxqSeo5g1qSes6glqSeM6glqecMaknqOYNaknrOoJaknjOoJannulyFfMck30jywyTnJ3ntMAqTJDW6XIX8ZuBvq+qsJNsAa5J8tap+uMi1SZLo0KKuqiur6qz2/nrgAmD7xS5MktSYVx91kp2BRwLfXYxiJEl31Dmok2wNfAZ4XVVdO8P6g5OsTrJ63bp1C1mjJE20TkGdZFOakP5oVX12pm2qalVVraiqFcuXL1/IGiVponUZ9RHgg8AFVfXuxS9JkjSoS4v68cDLgH2SnNPenrHIdUmSWnMOz6uqM4AMoRZJ0gw8M1GSes6glqSeM6glqecMaknqOYNaknrOoJaknjOoJannDGpJ6jmDWpJ6zqCWpJ4zqCWp5wxqSeo5g1qSes6glqSeM6glqecMaknqOYNaknrOoJaknjOoJannDGpJ6rk5gzrJsUmuTnLeMAqSJN1elxb18cDTFrkOSdIGzBnUVXUa8PMh1CJJmoF91JLUcwsW1EkOTrI6yep169Yt1GElaeItWFBX1aqqWlFVK5YvX75Qh5WkiWfXhyT1XJfheR8Hvg3smuSyJK9Y/LIkSVM2mWuDqjpgGIVIkmZm14ck9ZxBLUk9Z1BLUs8Z1JLUcwa1JPWcQS1JPWdQS1LPGdSS1HMGtST1nEEtST1nUEtSzxnUktRzBrUk9ZxBLUk9Z1BLUs8Z1JLUcwa1JPWcQS1JPWdQS1LPGdSS1HOdgjrJ05JclORHSf5usYuSJN1mzqBOsgw4Eng68FDggCQPXezCJEmNLi3qvYAfVdXFVXUjcALwnMUtS5I0pUtQbw9cOvD4snaZJGkINlmoAyU5GDi4fXhdkosW6tg9cw/gmmE92dvytmE91aQY6vtHMrSnmhBDe/9G8NbttKEVXYL6cmDHgcc7tMtup6pWAavmXdqYSbK6qlaMug5tHN+/8Tap71+Xro/vAbskuV+SzYAXAV9Y3LIkSVPmbFFX1c1J/gr4MrAMOLaqzl/0yiRJQMc+6qr6IvDFRa5lXCz57p0lzvdvvE3k+5eqGnUNkqRZeAq5JPWcQS1JPWdQa0lLcpckjxt1HdKdYR91R0meCTwM2GJqWVX90+gqUldJzq6qR466Dm28Sf/82aLuIMn7gBcCrwECPJ9ZziJS73w9yR8nniY4jvz82aLuJMm5VbXbwL9bA/9VVU8YdW2aW5L1wFbALcCvaT7sVVV3G2lh6sTP3wLO9bHE/br994Yk9wF+Btx7hPVoHqpqm1HXoDtl4j9/BnU3JyXZDngXcBZQwDGjLUnzkWQ/4Intw1Or6qRR1qN5mfjPn10f85Rkc2CLqvrVqGtRN0neATwa+Gi76ABgdVUdMrqqtDEm9fPnl4kdJHl+kqk/n98IHJfEUQTj4xnAvlV1bFUdCzwNeOaIa1JHSV7dtqipqt8Cd0nylyMua6gM6m7eWlXrk+wNPBX4IPC+Edek+dlu4P62I6tCG+NVVfXLqQdV9QvgVSOsZ+gM6m5uaf99JrCqqk4GNhthPZqfw4Czkxyf5EPAGuDtI65J3S0bHFrZXsd1oj5/9lF3kOQkmosl7AvsSfMt9JlVtftIC1NnSe5N008NzXt31SjrUXdJ3kUzbvr97aI/Ay6tqr8dXVXDZVB3kGRLmn7NH1TV/2s/9I+oqq+MuDTNIsmes62vqrOGVYs2XpK70ITzU9pFXwWOqapbNrzX0mJQd5Rkd2BqgP3pVfX9UdajuSX5xiyrq6r2GVox0p1gUHeQ5LU0X158tl30RzR91e8dXVXS0pbkk1X1giQ/oBk7fTtVtdsIyhoJg7qDJOcCj62q69vHWwHfnqRflHGWZFPgLxg44QV4f1XdNLKiNKck966qK5PMOK9HVV0y7JpGxTMTuwm3jfygve8EP+PjaGBT4Kj28cvaZa8cWUWaU1Vd2f47MYG8IQZ1N8cB301yYvv4ucCxI6xH8/PoaSN0TknidwxjIsnzgHcC96RpIE3cpFp2fXTUjiDYu314elWdPcp61F2Ss4DnV9WP28f3Bz5dVbOOClE/JPkR8OyqumDUtYyKLeoOknykql5GMyHM9GXqvzcC30hyMU1rbCfgoNGWpHn46SSHNBjUXT1s8EF7ZtSjRlSL5qmqvp5kF2DXdtFF7ZwRGg+rk3wC+Bzwu/etqj674V2WFk8hn0WSQ9pJ53dLcm2S9e3jq4HPj7g8dZTk1cBdq+rcqjoX2HLSJvUZc3cDbgD+EHh2e3vWSCsaMvuoO0hymFNijq8k51TVHtOWeR1FjQ27Prr5hyQvBe5XVf+cZEfg3lV15qgLUyfLkqTaVskkTuozjpK8qar+Ncl7mfmEl78eQVkjYVB3cyRwK7AP8M/Ade2yR8+2k3rjS8AnkgxO6vOlEdajbqa+QFw90ip6wK6PDpKcVVV7Dv65nOT7zp43HpzUR+POFnU3N7V/Lk/96bycpoWtMVBVt9KciXj0qGvR/CX5T+7Y9fErmpb2+6vqN8OvargM6m7+HTgRuGeStwP7A28ZbUmayyyT+kyd2eZcLePhYmA58PH28QuB9cCDgA/QTAmwpNn10VGSB9P86Rzg65M+AH8cOKnP0pDke1X16JmWJTm/qh62oX2XCsdRd5DkAcBPqupI4Dxg36mLbaq/pib1Aa6huSLIJcDmwO7AFSMrTPO1dZL7Tj1o72/dPrxxNCUNl0HdzWeAW5I8kOZyQDsCHxttSZqH04AtkmwPfIXmT+XjR1qR5uNvgDOSfCPJqcDpwBva6YY/NNLKhsQ+6m5uraqb21m8jqiq9yZxUqbxkaq6IckrgKPasbnnjLooza0dsbMNsAvw4HbxRQNfIB4+ksKGzBZ1NzclOQA4EDipXbbpCOvR/CTJY4GXACe3y5aNsB511I7YeVNV/baqvt/elvwoj+kM6m4OAh4LvL2qfpLkfsBHRlyTunstcAhwYlWd305zOtv1FNUvX0vyhiQ7Jrn71G3URQ2Toz7mKcmeXr16fLTj399ZVW8YdS3aOEl+MsPiqqr7D72YETGo52nqLMVR16Huknynqh4z6jqkjeWXifPntRLHz9lJvgB8Crh+auEkzWc8jpLsU1WntF/i38EkvX8G9fwdOuoCNG9bAD+jmVRrSgET80EfU08CTqGZf3q6iXr/7ProIMnjgXOq6vp2utM9gfd4Zpu0+JIsm/QJtBz10c3RwA1JdqcZfP9j4MOjLUldJXlQkq8nOa99vFsS52oZHz9JsirJU5JMZNejQd3Nze2k888BjmxPJd9mxDWpuw/QDM+7CaC9HNeLRlqR5uPBwNeAV9OE9hFJ9h5xTUNlUHezPskhwEuBk9uzpTzhZXxsOcPVeG4eSSWat6q6oao+WVXPAx5Jcw3F/zvisobKoO7mhTRXP35FVV0F7AC8a7QlaR6uaSfWmppPfH/gytl3UZ8keVKSo4A1NF8Ov2DEJQ2VXyZqyWvPRFwFPA74BfAT4CV+GTwekqwFzgY+CXyhqq6ffY+lx6CeRZIzqmrvJOuZeeL5u42oNM3D1KiBdra1u1TV+lHXpO6S3K2qrm3vT+SZwQa1lrwk/017gVvglPKXfmxN6pnB9lHPIcmyJBeOug7dKRM/amAJcXie7qgdaH/R4BUmNF4cNbCkTOSZwQZ1N78HnN+eNPGFqduoi1J3kz5qYJwleXz7/QI0l+V694aug7lU2UfdQZInzbS8qmyVjQFHDYy3JOfSXOdyN+A44IPAC6pqxs/lUmRQa8lz1MB4m/oCMcn/BC6vqg9O2peKzp43ixmG5f1uFQ7PGxtTId06hmZSLY2PwTODnziJZwYb1LOoKufzWHomctTAmHsh8GLaM4PbL/Yn6sxguz40UZI8t6o+N+o6pPlw1IeWPEcNjKckZ7T/rk9y7cBtfZJr59p/KbFFrSXPUQMad7aoNQmcT3xMeWZww6DWJHA+8THlmcENR31oEkz8qIExN3Vm8Jnc/iry+42upOGyj1pSr3lmsEGtJcz5xLVUGNSSeskzg29jUGtJS7IMOL+qHjzqWqSN5agPLWmOGtBS4KgPTYKJHzWg8WZQaxK8ddQFSHeGfdSS1HO2qLVkOWpAS4UtaknqOUd9SFLPGdSS1HMGtcZakj9IckKSHydZk+SLSR6U5LxR1yYtFL9M1NhKEuBE4ENV9aJ22e7AvUZamLTAbFFrnD0ZuKmq3je1oKq+D1w69TjJzklOT3JWe3tcu/zeSU5Lck6S85I8oZ2k/vj28Q+SvH74P5J0R7aoNc4eDqyZY5urgX2r6jdJdgE+DqygmZ/6y1X19nY+kC2BPYDtq+rhAEm2W7zSpe4Mai11mwJHJNkDuAV4ULv8e8CxSTYFPldV5yS5GLh/kvcCJwNfGUnF0jR2fWicnQ88ao5tXg/8lObitiuAzQCq6jTgicDlwPFJDqyqX7TbnQr8OXDM4pQtzY9BrXF2CrB5koOnFiTZDdhxYJttgSur6lbgZcCydrudgJ9W1QdoAnnPJPcA7lJVnwHeAuw5nB9Dmp1dHxpbVVVJ/gg4PMmbgd8Aa4HXDWx2FPCZJAcCX+K22fNWAm9MchNwHXAgsD1wXHvxW4BDFv2HkDrwFHJJ6jm7PiSp5wxqSeo5g1qSes6glqSeM6glqecMaknqOYNaknrOoJaknvv/lr87cIiQdMAAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "import pandas as pa\n", "\n", "df = pa.read_csv('https://raw.githubusercontent.com/nurfnick/Data_Viz/main/Data_Sets/iris.csv')\n", "\n", "dfgrouped = df.groupby('Class').agg(['mean','std', 'count'])\n", "\n", "dfgrouped.SepalLength.plot.bar(y = 'mean',yerr = 'std', legend = False, color = ['purple','red', 'blue'], title = \"Error of Standard Deviation\")" ] }, { "cell_type": "code", "source": [ "import numpy as np\n", "from scipy.stats import t\n", "\n", "def SE(std,n):\n", " return std/np.sqrt(n)\n", "\n", "\n", "\n", "dfgroupedSepalLength = dfgrouped.SepalLength\n", "\n", "dfgroupedSepalLength['SE'] = dfgroupedSepalLength.apply(lambda x: SE(x['std'],x['count']), axis = 1)\n", "\n", "\n", "dfgroupedSepalLength.loc[:,'95%'] = dfgroupedSepalLength.loc[:,'SE']*t.ppf(.975,49)\n", "\n", "dfgroupedSepalLength\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 397 }, "id": "zV1Ym-sE9sYW", "outputId": "4fcae12f-3508-4f62-ee4a-276857fba34b" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:11: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " # This is added back by InteractiveShellApp.init_path()\n", "/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1667: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self.obj[key] = value\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ " mean std count SE 95%\n", "Class \n", "Iris-setosa 5.006 0.352490 50 0.049850 0.100176\n", "Iris-versicolor 5.936 0.516171 50 0.072998 0.146694\n", "Iris-virginica 6.588 0.635880 50 0.089927 0.180715" ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meanstdcountSE95%
Class
Iris-setosa5.0060.352490500.0498500.100176
Iris-versicolor5.9360.516171500.0729980.146694
Iris-virginica6.5880.635880500.0899270.180715
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 10 } ] }, { "cell_type": "code", "source": [ "dfgroupedSepalLength.plot.bar(y = 'mean',yerr = 'SE', title = 'Graphed with Standard Error' )" ], "metadata": { "id": "3n6oqPbuBOnH", "outputId": "bfeed471-5413-47d4-b8b5-0c81138b1292", "colab": { "base_uri": "https://localhost:8080/", "height": 371 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 11 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAFQCAYAAACWOTQoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdfElEQVR4nO3debRcVZn+8e+Tm8CFEKDFKxICBlsgEgkQQ2wNYAzQojh1NyqIuhzz6wanbifoNjbqUnFYtsokEQKIojKIpkFpQAiIA5iQgIRBECJcxhAJhGAkCe/vj7MrVC53OJXcqrPr1vNZq1bqDHXqrarUc0/ts88+igjMzCxfo6ouwMzMBuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPaNpB0gqTvD9O2Zkrq3cxt7CrpSUldg6wTkl6yOc/TKpKWSTpkGLfXNq/dNo+DOmOSjpR0vaTVkh5J94+RpKpra4WIuDcitomI9QCSFkj6wKZuT9L2kuZJekjSKkl/lHRc3fIRE3zpvVqT/tDVbv9bdV22aRzUmZL0ceBbwNeAFwI7Av8KzAC2GOAxA+55GgD/A2wDvBTYDngTcFelFZUgafQmPvRD6Q9d7fbGsttv9Dk3o0YrwUGdIUnbAZ8HjomICyNiVRQWR8TREfG3tN7Zkk6T9HNJq4HXSDpc0mJJT0i6T9IJddudmPYaZ0t6QNKDkj7R5+m3kPS9tMe5VNK0usePl3SRpOWS7pH0kbplW6V6HpN0K7D/IK/vc5JOSvfHpF8MX6vbzhpJz6urd7SkLwIHAienvcOT6zZ5iKQ7Ja2UdMogvzj2B86LiMci4pmIuD0iLkzPe21a56a0/bdL+jtJl6TX+1i6P6HudSyQ9AVJv07v1+WSnl+3/F2S/ixphaT/6vMeTJf021Tzg5JOlrRF3fKQdKykO4E707xPpnUfkPS+gd7fodSapSR9WtJDwFkqmr0ulPR9SU8A70mf93xJf5F0l6QP1m3jOetvaj1WQkT4ltkNOAxYB4weYr2zgccp9rJHAd3ATGDvND0FeBh4S1p/IhDAD4Gxab3lwCFp+QnAGuD1QBfwZeB3adkoYBHwWYo9+hcDdwOvTctPBH4FPA/YBbgF6B2g7lnAH9L9VwF/Aq6vW3ZTn3pHp+kFwAf6bCuAS4DtgV3T6zlsgOc9A1gKvBfYvZ/lAbykbnoH4F+ArYFxwAXAT+uWL0i17wFslaZPTMv2Ap4EDgK2BL6RPtPae/1y4B+A0el13gZ8rE8tV6T3c6v0f+Jh4GXpszuvb719Xstz3qu6ZTNTLV9JtW2VPvu1wFvSZ70VcC1wKsX/q33Tezur7v/KRutX/b0ZybfKC/Ctnw8F3gk81Gfeb4CVwF+Bg9K8s4HvDbGtbwL/k+7Xgm9S3fKvAmem+ycAV9Yt2wv4a7r/CuDePts+Hjgr3b+7PiCB2Qwc1FtR/EHYATgO+E+gl6JZ4nPAt/vUO1RQH1A3fT5w3CDP+58Uf3DWUjR7vK7PtvoNvrR8X+CxuukFwGfqpo8BLkv3Pwv8qG7ZWOBpUlD3s+2PARf3qWVW3fQ80h+BNL3HYPWm2p5K/2dqty+kZTNTLd11658AXFs3vQuwHhhXN+/LwNn9re9bc29u+sjTCuD59e1+EfGqiNg+Lav/3O6rf6CkV0i6Ov1cf5yiXfv5bKz+MX8GxtdNP1R3/ymgO9XxImB8+qm+UtJKitDbMa07vp/t9isi/gosBF5Nscd5DcUfohlp3jUDPXYAfWveZqDnjYgvRcTLKf5InA9cIOl5/a0vaWtJp6fmiyco9jC373MsYKDn3uj9iIjVFJ9dbdt7pKaUh9K2v8Tgn1Pp97fORyJi+7rbnLplyyNizRDP95eIWNXnOXceYH1rIgd1nn4L/A14c4l1+w5/eB4wH9glIrYDvgP0bbPdpe7+rsADJZ7nPuCePl/8cRHx+rT8wX62O5hrKJo59gN+n6ZfC0ynCMT+DNtQjxFRC8exwG4DrPZxYE/gFRGxLcUfFXju+9mfjd4PSVtT/HGoOQ24naIJZluKP3p9t1v/eht9f4fS33tZP+8B4HmSxvV5zvuH2IY1gYM6QxGxkqIJ4FRJR0gaJ2mUpH0pgmUw4yj2hNZImg68o5915qS9xckU7bU/LlHWDcCqdABqK0ldkl4mqXbQ8Hzg+HQAbgLw4SG2dw3wbuDWiHia1KxB8cdg+QCPeZiibXyTSJojaX9JW0jqBj5K0SRwxwDbH0fR1LQy7XX/dwNPdyHwBkkHpIOEn2fj79s44AngSUmTgH8bYnvnUxzg2yuFfiO1NCwi7qP4lfNlSd2SpgDvB4aln701xkGdqYj4KvAfwKcoAuRh4HTg0xRfoIEcA3xe0iqKdtLz+1nnGor22V8CX4+Iy0vUsx54A0U77T3AoxQH57ZLq3yO4qfxPcDlwLlDbPI3PHvACuBWinbrgfamoeiueETqgfHtoWru72UAZ6XaHwAOBQ6PiCfT8hOAc1LTztso2ve3Suv/Dris9BNFLAWOpfiF8yDwGEU7fM0nKP6IrgK+yxB/LCPiF6meqyg+u6tKlFHrIVO7LSpbf3IUxXGCB4CLgf+OiCsb3IYNA6UDA9YBJE2kCNIxEbGu2mrMrCzvUZuZZc5BbWaWuSGDWtKekpbU3Z6Q9LFWFGfDKyKWRYTc7GHWXhpqo079R++n6K5Uph+nmZltpkabPg4G/uSQNjNrnUZHvDqSYpyI55A0m+K0YcaOHfvySZMmbWZpZmadY9GiRY9GRE9/y0o3faRO+w8AkyPi4cHWnTZtWixcuLDhQs3MOpWkRRExrb9ljTR9vA64caiQNjOz4dVIUB/FAM0eZmbWPKWCWtJYitNtf9LccszMrK9SBxPTEI07DLniINauXUtvby9r1vQdWXHk6+7uZsKECYwZM6bqUsysDbXsOme9vb2MGzeOiRMnMvCVkkaeiGDFihX09vay224DjaZpZjawlp1CvmbNGnbYYYeOCmkASeywww4d+UvCzIZHS8f66LSQrunU121mw8ODMpmZZa5lbdR9TTzu0mHd3rITDx/W7ZlZXmbOnAnAggULKq2jCh2zR71s2TImTZrEe97zHvbYYw+OPvporrzySmbMmMHuu+/ODTfcwOrVq3nf+97H9OnT2W+//fjZz3624bEHHnggU6dOZerUqfzmN8UFVhYsWMDMmTM54ogjmDRpEkcffTS+EIOZDbfK9qircNddd3HBBRcwb9489t9/f8477zyuu+465s+fz5e+9CX22msvZs2axbx581i5ciXTp0/nkEMO4QUveAFXXHEF3d3d3HnnnRx11FHUTpFfvHgxS5cuZfz48cyYMYNf//rXHHDAARW/UjMbSToqqHfbbTf23ntvACZPnszBBx+MJPbee2+WLVtGb28v8+fP5+tf/zpQ9FS59957GT9+PB/60IdYsmQJXV1d/PGPf9ywzenTpzNhwgQA9t13X5YtW+agto4x3E2Yg3no7hUtfc6cmlM7Kqi33HLLDfdHjRq1YXrUqFGsW7eOrq4uLrroIvbcc8+NHnfCCSew4447ctNNN/HMM8/Q3d3d7za7urpYt85j8pvZ8OqYNuoyXvva13LSSSdtaGdevHgxAI8//jg77bQTo0aN4txzz2X9+vVVlmlmHcZBXWfOnDmsXbuWKVOmMHnyZObMmQPAMcccwznnnMM+++zD7bffztixYyuu1KzzvPAdJ/LCd5xYdRmVaOhSXGX1Nx71bbfdxktf+tJhf6520emv30amVrZRt1qr26iHazxqMzOrgIPazCxzDmozs8y1NKg79ay9Tn3dZjY8WhbU3d3drFixouNCqzYedX3fazOzRrTshJcJEybQ29vL8uXLW/WU2ahd4cXMbFO0LKjHjBnjK5yYmW0CH0w0M8ucg9rMLHMOajOzzJUKaknbS7pQ0u2SbpP0ymYXZmZmhbIHE78FXBYRR0jaAti6iTWZmVmdIYNa0nbAQcB7ACLiaeDp5pZlZmY1ZZo+dgOWA2dJWizpDEnPGedT0mxJCyUt7MS+0pa/mTNnbrhAqlk7KRPUo4GpwGkRsR+wGjiu70oRMTcipkXEtJ6enmEu08ysc5Vpo+4FeiPi+jR9If0EtdmmGMnX3IO8rrtn7WvIPeqIeAi4T1LtQoIHA7c2tSozM9ugbK+PDwM/SD0+7gbe27ySzMysXqmgjoglQL+XiDFrF516vT1rfz4z0cwscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMjS6zkqRlwCpgPbAuIqY1sygzM3tWqaBOXhMRjzatEjMz65ebPhowc+ZMZs6cWXUZZtZhyu5RB3C5pABOj4i5fVeQNBuYDbDrrrsOX4VDmHjcpS17rofuXtHy51x24uEtey4zy1PZPeoDImIq8DrgWEkH9V0hIuZGxLSImNbT0zOsRZqZdbJSe9QRcX/69xFJFwPTgWubWViOXviOE6suwcw60JB71JLGShpXuw/8I3BLswszM7NCmT3qHYGLJdXWPy8iLmtqVWZmtsGQQR0RdwP7tKAWMzPrh7vnmZllzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpa50kEtqUvSYkmXNLMgMzPbWCN71B8FbmtWIWZm1r9SQS1pAnA4cEZzyzEzs77K7lF/E/gU8EwTazEzs34MGdSS3gA8EhGLhlhvtqSFkhYuX7582Ao0M+t0ZfaoZwBvkrQM+BEwS9L3+64UEXMjYlpETOvp6RnmMs3MOteQQR0Rx0fEhIiYCBwJXBUR72x6ZWZmBrgftZlZ9kY3snJELAAWNKUSMzPrl/eozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8vckEEtqVvSDZJukrRU0udaUZiZmRVGl1jnb8CsiHhS0hjgOkm/iIjfNbk2MzOjRFBHRABPpskx6RbNLMrMzJ5Vqo1aUpekJcAjwBURcX1zyzIzs5pSQR0R6yNiX2ACMF3Sy/quI2m2pIWSFi5fvny46zQz61gN9fqIiJXA1cBh/SybGxHTImJaT0/PcNVnZtbxyvT66JG0fbq/FXAocHuzCzMzs0KZXh87AedI6qII9vMj4pLmlmVmZjVlen3cDOzXglrMzKwfPjPRzCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8wNGdSSdpF0taRbJS2V9NFWFGZmZoXRJdZZB3w8Im6UNA5YJOmKiLi1ybWZmRkl9qgj4sGIuDHdXwXcBuzc7MLMzKzQUBu1pInAfsD1zSjGzMyeq3RQS9oGuAj4WEQ80c/y2ZIWSlq4fPny4azRzKyjlQpqSWMoQvoHEfGT/taJiLkRMS0ipvX09AxnjWZmHa1Mrw8BZwK3RcQ3ml+SmZnVK7NHPQN4FzBL0pJ0e32T6zIzs2TI7nkRcR2gFtRiZmb98JmJZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWVuyKCWNE/SI5JuaUVBZma2sTJ71GcDhzW5DjMzG8CQQR0R1wJ/aUEtZmbWD7dRm5llbtiCWtJsSQslLVy+fPlwbdbMrOMNW1BHxNyImBYR03p6eoZrs2ZmHc9NH2ZmmSvTPe+HwG+BPSX1Snp/88syM7Oa0UOtEBFHtaIQMzPrn5s+zMwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8tcqaCWdJikOyTdJem4ZhdlZmbPGjKoJXUBpwCvA/YCjpK0V7MLMzOzQpk96unAXRFxd0Q8DfwIeHNzyzIzs5oyQb0zcF/ddG+aZ2ZmLTB6uDYkaTYwO00+KemO4dp2Zp4PPNqqJ9NXWvVMHcOfX3tr2edXwWf3ooEWlAnq+4Fd6qYnpHkbiYi5wNyGS2szkhZGxLSq67BN48+vvXXq51em6eP3wO6SdpO0BXAkML+5ZZmZWc2Qe9QRsU7Sh4D/A7qAeRGxtOmVmZkZULKNOiJ+Dvy8ybW0ixHfvDPC+fNrbx35+Skiqq7BzMwG4VPIzcwy56A2M8ucg9pGNEmjJL2q6jrMNofbqEuSdDgwGeiuzYuIz1dXkZUlaXFE7Fd1HbbpOv375z3qEiR9B3g78GFAwFsZ5Cwiy84vJf2LJFVdiDXO3z/vUZci6eaImFL37zbALyLiwKprs6FJWgWMBdYDf6X4skdEbFtpYVaKv3/DONbHCPfX9O9TksYDK4CdKqzHGhAR46quwTZLx3//HNTlXCJpe+BrwI1AAGdUW5I1QtKbgIPS5IKIuKTKeqwhHf/9c9NHgyRtCXRHxONV12LlSDoR2B/4QZp1FLAwIo6vrirbFJ36/fPBxBIkvVVS7efzJ4GzJLkXQft4PXBoRMyLiHnAYcDhFddkJUk6Nu1RExF/A0ZJOqbislrKQV3OnIhYJekA4BDgTOA7Fddkjdm+7v52lVVhm+KDEbGyNhERjwEfrLCelnNQl7M+/Xs4MDciLgW2qLAea8yXgcWSzpZ0DrAI+GLFNVl5XfVdK9N1XDvq++c26hIkXUJxsYRDgakUR6FviIh9Ki3MSpO0E0U7NRSf3UNV1mPlSfoaRb/p09Os/wfcFxEfr66q1nJQlyBpa4p2zT9ExJ3pS793RFxecWk2CElTB1seETe2qhbbdJJGUYTzwWnWFcAZEbF+4EeNLA7qkiTtA9Q62P8qIm6qsh4bmqSrB1kcETGrZcWYbQYHdQmSPkpx8OInadY/UbRVn1RdVWYjm6TzI+Jtkv5A0Xd6IxExpYKyKuGgLkHSzcArI2J1mh4L/LaT/qO0M0ljgH+j7oQX4PSIWFtZUTYkSTtFxIOS+h3XIyL+3OqaquIzE8sRz/b8IN33AD/t4zRgDHBqmn5XmveByiqyIUXEg+nfjgnkgTioyzkLuF7SxWn6LcC8Cuuxxuzfp4fOVZJ8jKFNSPpn4CvACyh2kDpuUC03fZSUehAckCZ/FRGLq6zHypN0I/DWiPhTmn4xcGFEDNorxPIg6S7gjRFxW9W1VMV71CVIOjci3kUxIEzfeZa/TwJXS7qbYm/sRcB7qy3JGvBwJ4c0OKjLmlw/kc6MenlFtViDIuKXknYH9kyz7khjRlh7WCjpx8BPgQ2fW0T8ZOCHjCw+hXwQko5Pg85PkfSEpFVp+hHgZxWXZyVJOhbYKiJujoibga07bVCfNrct8BTwj8Ab0+0NlVbUYm6jLkHSlz0kZvuStCQi9u0zz9dRtLbhpo9y/kvSO4HdIuILknYBdoqIG6ouzErpkqRIeyWdOKhPO5L0qYj4qqST6P+El49UUFYlHNTlnAI8A8wCvgA8mebtP9iDLBuXAT+WVD+oz2UV1mPl1A4gLqy0igy46aMESTdGxNT6n8uSbvLoee3Bg/pYu/MedTlr08/l2k/nHoo9bGsDEfEMxZmIp1VdizVO0v/y3KaPxyn2tE+PiDWtr6q1HNTlfBu4GHiBpC8CRwCfqbYkG8ogg/rUzmzzWC3t4W6gB/hhmn47sArYA/guxZAAI5qbPkqSNInip7OAX3Z6B/x24EF9RgZJv4+I/fubJ2lpREwe6LEjhftRlyDp74F7IuIU4Bbg0NrFNi1ftUF9gEcprgjyZ2BLYB/ggcoKs0ZtI2nX2kS6v02afLqaklrLQV3ORcB6SS+huBzQLsB51ZZkDbgW6Ja0M3A5xU/lsyutyBrxH8B1kq6WtAD4FfCJNNzwOZVW1iJuoy7nmYhYl0bxOjkiTpLkQZnahyLiKUnvB05NfXOXVF2UDS312BkH7A5MSrPvqDuA+M1KCmsx71GXs1bSUcC7gUvSvDEV1mONkaRXAkcDl6Z5XRXWYyWlHjufioi/RcRN6Tbie3n05aAu573AK4EvRsQ9knYDzq24Jivvo8DxwMURsTQNczrY9RQtL1dK+oSkXSQ9r3aruqhWcq+PBkma6qtXt4/U//0rEfGJqmuxTSPpnn5mR0S8uOXFVMRB3aDaWYpV12HlSfpdRPxD1XWYbSofTGycr5XYfhZLmg9cAKyuzeyk8YzbkaRZEXFVOoj/HJ30+TmoG/e5qguwhnUDKygG1aoJoGO+6G3q1cBVFONP99VRn5+bPkqQNANYEhGr03CnU4Fv+cw2s+aT1NXpA2i510c5pwFPSdqHovP9n4DvVVuSlSVpD0m/lHRLmp4iyWO1tI97JM2VdLCkjmx6dFCXsy4NOv9m4JR0Kvm4imuy8r5L0T1vLUC6HNeRlVZkjZgEXAkcSxHaJ0s6oOKaWspBXc4qSccD7wQuTWdL+YSX9rF1P1fjWVdJJdawiHgqIs6PiH8G9qO4huI1FZfVUg7qct5OcfXj90fEQ8AE4GvVlmQNeDQNrFUbT/wI4MHBH2I5kfRqSacCiygODr+t4pJaygcTbcRLZyLOBV4FPAbcAxztg8HtQdIyYDFwPjA/IlYP/oiRx0E9CEnXRcQBklbR/8Dz21ZUmjWg1msgjbY2KiJWVV2TlSdp24h4It3vyDODHdQ24km6l3SBW+Cq8H/6ttWpZwa7jXoIkrok3V51HbZZOr7XwAji7nn2XKmj/R31V5iw9uJeAyNKR54Z7KAu5++Apemkifm1W9VFWXmd3mugnUmakY4vQHFZrm8MdB3Mkcpt1CVIenV/8yPCe2VtwL0G2pukmymuczkFOAs4E3hbRPT7vRyJHNQ24rnXQHurHUCU9Fng/og4s9MOKnr0vEH00y1vwyLcPa9t1EI6OYNiUC1rH/VnBh/UiWcGO6gHEREez2Pk6cheA23u7cA7SGcGpwP7HXVmsJs+rKNIektE/LTqOswa4V4fNuK510B7knRd+neVpCfqbqskPTHU40cS71HbiOdeA9buvEdtncDjibcpnxlccFBbJ/B44m3KZwYX3OvDOkHH9xpoc7Uzg29g46vIv6m6klrLbdRmljWfGeygthHM44nbSOGgNrMs+czgZzmobUST1AUsjYhJVdditqnc68NGNPcasJHAvT6sE3R8rwFrbw5q6wRzqi7AbHO4jdrMLHPeo7YRy70GbKTwHrWZWebc68PMLHMOajOzzDmora1JeqGkH0n6k6RFkn4uaQ9Jt1Rdm9lw8cFEa1uSBFwMnBMRR6Z5+wA7VlqY2TDzHrW1s9cAayPiO7UZEXETcF9tWtJESb+SdGO6vSrN30nStZKWSLpF0oFpkPqz0/QfJP1761+S2XN5j9ra2cuARUOs8whwaESskbQ78ENgGsX41P8XEV9M44FsDewL7BwRLwOQtH3zSjcrz0FtI90Y4GRJ+wLrgT3S/N8D8ySNAX4aEUsk3Q28WNJJwKXA5ZVUbNaHmz6snS0FXj7EOv8OPExxcdtpwBYAEXEtcBBwP3C2pHdHxGNpvQXAvwJnNKdss8Y4qK2dXQVsKWl2bYakKcAudetsBzwYEc8A7wK60novAh6OiO9SBPJUSc8HRkXERcBngKmteRlmg3PTh7WtiAhJ/wR8U9KngTXAMuBjdaudClwk6d3AZTw7et5M4JOS1gJPAu8GdgbOShe/BTi+6S/CrASfQm5mljk3fZiZZc5BbWaWOQe1mVnmHNRmZplzUJuZZc5BbWaWOQe1mVnmHNRmZpn7//6X1NmE8qBxAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "dfgroupedSepalLength.plot.bar(y = 'mean',yerr = '95%', title = 'Graphed with 95% Confidence Interval' )" ], "metadata": { "id": "mOiVkOd6EjrH", "outputId": "0d9b47d9-694d-430f-e95b-3bfad6f1e20d", "colab": { "base_uri": "https://localhost:8080/", "height": 371 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 12 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAFQCAYAAACWOTQoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAf5UlEQVR4nO3deZwcVb3+8c+TSSACERSGJQRIVEJkJw5RCEJuAEFxF5VFvbjlKqJwFQR+VxT1Iij83BDQgGG7oqKIckGRNSyiYEICEhDZAoQ1RIEQiJLke/+o09AZZqZrwkzX6enn/XrNa7qrqqu/3dX99OnTp6oUEZiZWb6GVV2AmZn1zUFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B3WGJB0r6X8GaF1TJC14mevYVNIzkjr6WCYkve7l3E+rk7SFpLmSFkv6nKQfSjqmj+Xb/jlbVe323DmoS5C0n6QbJS2R9Hi6fLAkVV1bM0TEAxGxVkQsB5A0U9InVnV9klaX9B1JD0v6h6RTJY2omz9T0tL04fCMpDvr5m0naZ6kJyR9vm76iLRdNmlw36ulD8K70vacL2mGpLGr+njqfBG4OiJGRcT3I+JTEfH1AVhvU6TnYo+Sy76s14D1j4O6AUlfAL4HnAhsCGwAfAqYDKzWy216bXkaAEcBXcDWwHhgIvClbssckj4c1oqILeqmHw8cDmwH/JekDdP0zwMXRMSDDe77l8A7gQOAtdN6ZgO7v4zHU7MZMG8A1jPk+T3STxHhv17+KN7IS4D3NVjuLOA04Ldp+T2AfYA5wNPAg8CxdcuPBQKYBjwMPAIcXjf/WOB84BxgMcWbv6tu/mjgAmAhcB/wubp5r0j1/AO4HTgCWNBL3V8FTk6XR6TaT6xbz1Lg1XX1DgeOA5anec8AP0jLB8UH2F3Ak8ApgHq531nA++uuHwA8WHd9JvCJXm57B7B6uvwnYBJFQN4EjGiwnfYAngM26WOZ0cBFwN+Bu4FPltkuwFXdnpfxaTv8d93tj0jb+mHgY+k5e12atzpwEvAA8BjwQ+AVad4UYAHwBeDxtI6Pdtvm/x+4H3gKuL7utm8Cbkjb5BZgSh+PfT6wR7p8UFrPSem1dB/w1jSvt9fABODy9NzdCXygj/fIkcCjQEfdMu8Bbk2XJwF/THU/AvwAWK1u2Reeu3b4q7yAnP+AvYFlwPAGy52V3iCTKb6ljExvrm3S9W3Tm+/dafmx6YX2U2DNtNzCujfJselN8Dagg6IV+ac0bxhFC/DLFC361wD3Anul+ScA11EE7CbAbfQe1FOBv6TLOwP3ADfWzbulW73D0/WZdAvSNP9iYB1g0/R49u7lfmd1exMfmG6/dt36FwJPAH+gLlyAXwDvAMakN/q6wK+B3UpszxOAaxoscy1watqG26c6pjbaLj09L9QFdXotPUbxLWJN4DxWDurvUHxAvBoYBfwvcHyaN4Xidfg1ig/UtwHPAq9K809J971xqmtniuDfGFiUlh8G7Jmud/by2OezclA/D3wyrfPTFB8w6uWxrknRIPkoxQf6Dmn7bdnHe+QeYM9u2/aodPkNFB8ywylef3cAh3V7vTmo/RcAHwIe7Tat1jp5Dtg1TTsLOKfBur4LfCddHpteaBPq5n8L+HG6fCxwRd28LYHn0uU3Ag90W/fRwJnp8r3UBSRFq723oK61mtel6I74fxQtt7UoWtvf71Zvo6Depe76+bU3XQ/3+98UAdxJ0Z10Y7r9RnWPcRRF2Pw7Rev1tWneZhStspuB/Sm6Mc6l+HD4DXANda31bvd7OvCzPrbRJhQtxVF1044Hzmq0XXp6Xlg5qGcAJ9TNG18LG0AUrczX1s3fCbgvXZ6SXm/D6+Y/ThFkw9K87Xp4PEcC53ab9nvg33t5/PNZOajvrpu3Rqp3w14e6weB67qt70fAV3p7j6TXwYx0eVR6DjbrpbbDgAu7vd7aJqiHY31ZBKwnaXhELAOIiJ0B0kiK+j7+lfpGJb2RogW3NUXLd3WKFgO93OZ+ipZ1zaN1l58FRkoaThFUoyU9WTe/g6IVDcVX9+7r7VFEPCdpFrAbsCvFV9rtKVo9uwEn93bbXnSvea1eljuOouU9F/gnRYDuQNHiJCJurFv2bEn7U7QKT46I+9NlJK1B8fX4LanWnwOXALdJujIi/t7tfhdRBGRvRgN/j4jFddPup+hP7+0xjqx/fTRY9+xu663ppAjC2XW/T4tiu75Qe7f7qD2/6/Fi67S7zYD3S3pH3bQRwNUNaq154bFGxLOptt626WbAG7u9LodTfIjWdP/94DzgBkmfBt4L3Jy2L5LGA9+meO7XSOuaTZvyj4l9+yNFkLyrxLLR7fp5FF9lN4mItSn6HLuPEqkfobApxVfLRh6kaGmtU/c3KiLeluY/0sN6+3INRTfHDsCf0/W9KPoIr+3lNt0fa79ExHMRcUhEbBwRr6EI0NkRsaKP++tphM2XgdMj4jGKD7lZEfEUxbeCnoZuXQFMkjSml/t5GHi1pFF10zYFHmr8qBrqa7s8QdEq3qpum64dEb2FYr0nKL4VvbaHeQ9StKjrXytrRsQJq/og6nR/DTxI0a1Uf19rRcSne7tNRNxO8YH1VorfKc6rm30a8Fdg84h4JcW3vbYYZdUTB3UfIuJJii6AUyXtK2mUpGGStqfok+vLKIrW2VJJkyheiN0dI2kNSVtR9O39vERZNwGLJR0p6RWSOiRtLWnHNP984GhJr0qB9NkG67sG+Ahwe0T8i/SVluLDYGEvt3mMom98lUjaWNJoFd4EHAN8Jc1bR9JekkZKGi7pQIrW/qXd1rElRZfAaWnSfcBUSRsAm1P8KLeSiLiC4seuCyW9Ia1/lKRPSfpYFCNGbgCOT/e/LfBxYCDGtJ8PHCRpy/RN4Ct1da2g+FbxHUnr1z1HezVaabrtDODb6TntkLSTpNVT3e9Iz2dHekxT+vig6o/ur4GLgfGSPpyGSo6QtKOk1zdYz3nAoRTbuP4b5yiKH+KfkTSBoo+8bTmoG4iIb1EM/foixYvzMYq+tyMp3tS9ORj4mqTFFC2/83tY5hqKkQVXAidFxGUl6lkOvJ2ii+I+ihbVGRQjVKD4YLk/zbuMlb969uQGir7qWuv5dooWWm+taSiGK+6bxkB/v1HNPXhtut8lwNkUfdm1xz6Cou+y9mPiZyl+hP1bt3WcAhyang8o+uk/RzES4xsR8Sg925eij/vnFD9u3Ubx9fqKNH9/ij75h4ELKfpYr3jpavonIn5H8TvFVRTb/KpuixyZpv9J0tOpni0o53DgLxTfiP4OfBMYlj543kXRGl1I0eo9goF536/0GkjdRW8B9qN47h5NdazeYD0/pehmuyoinuj2mA6g+H3idMo1Yoas2i+41kRp54r7KIaTNerbNLM25xa1mVnmHNRmZplz14eZWebcojYzy1zDoNaLh26s/T0t6bBmFGdmZv3s+khHvHoIeGNtD6KerLfeejF27NiXX52ZWZuYPXv2ExHR2dO8/u5CvjtwT18hDTB27FhmzZrVz1WbmbUvSb3man/7qPejGKBuZmZNUjqoJa1GcaSy7gcWqs2fJmmWpFkLF/a257GZmfVXf1rUb6U4utVjPc2MiOkR0RURXZ2dPXazmJnZKuhPH/X+vIxuj+eff54FCxawdOnSVV1Fyxo5ciRjxoxhxIgRjRc2M+umVFBLWpPi7BD/sap3tGDBAkaNGsXYsWNRe5wTFihOzLBo0SIWLFjAuHHjqi7HzFpQqa6PiFgSEeumY/2ukqVLl7Luuuu2VUgDSGLddddty28SZjYwmrpnYruFdE27Pm4zGxjehdzMLHOVnTNx7FGXDOj65p+wz4Cuz8zyMmXKFABmzpxZaR1VaJsW9fz585kwYQIHHXQQ48eP58ADD+SKK65g8uTJbL755tx0000sWbKEj33sY0yaNIkddtiB3/zmNy/c9s1vfjMTJ05k4sSJ3HBDcWKXmTNnMmXKFPbdd18mTJjAgQceiI9GaGYDra3OQn733Xfzi1/8ghkzZrDjjjty3nnncf3113PRRRfxjW98gy233JKpU6cyY8YMnnzySSZNmsQee+zB+uuvz+WXX87IkSO566672H///V/YRX7OnDnMmzeP0aNHM3nyZP7whz+wyy67VPxIzWwoaaugHjduHNtssw0AW221FbvvvjuS2GabbZg/fz4LFizgoosu4qSTTgKKkSoPPPAAo0eP5pBDDmHu3Ll0dHTwt7+9ePq+SZMmMWZMca7Q7bffnvnz5zuozWxAtVVQr776i+fZHDZs2AvXhw0bxrJly+jo6OCCCy5giy1WPqfoscceywYbbMAtt9zCihUrGDlyZI/r7OjoYNkynwLRzAZW2/RRl7HXXntx8sknv9DPPGfOHACeeuopNtpoI4YNG8a5557L8uXL+1qNmdmAaqsWdSPHHHMMhx12GNtuuy0rVqxg3LhxXHzxxRx88MG8733v45xzzmHvvfdmzTXXrLpUsywM9Oitvjx676Km3mdOI8kG5ZyJXV1d0f141HfccQevf/3rB/y+WkW7P34bmpoa1OcdBcCGB5zQlPtrdlBLmh0RXT3Nc9eHmVnmHNRmZplzUJuZZa6pQd2ue+216+M2s4HRtFEfI0eOZNGiRW13qNPa8ajrx16bWf8160fEHDUtqMeMGcOCBQtox/Mp1s7wYma2KpoW1CNGjPAZTszMVoF/TDQzy5yD2swscw5qM7PMOajNzDLnoDYzy1ypoJa0jqRfSvqrpDsk7TTYhZmZWaHs8LzvAZdGxL6SVgPWGMSazAZFO58c1Vpbw6CWtDawK3AQQET8C/jX4JZlZmY1Zbo+xgELgTMlzZF0hiQfOd/MrEnKBPVwYCJwWkTsACwBjuq+kKRpkmZJmtWOu4mbmQ2WMkG9AFgQETem67+kCO6VRMT0iOiKiK7Ozs6BrNHMrK017KOOiEclPShpi4i4E9gduH3wS7N2MJTPuQd5nXfPWlfZUR+fBX6SRnzcC3x08EoyM7N6pYI6IuYCPZ500czMBpf3TDQzy1zTjkdtVrV2PkOItTa3qM3MMuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8w5qM3MMuegNjPLnIPazCxzDmozs8yVOrmtpPnAYmA5sCwiugazqFxNmTIFgJkzZ1Zah5m1l/6chfzfIuKJQavEzMx65K4PM7PMlW1RB3CZpAB+FBHTB7Gmfhl71CVNu69H713U9Pucf8I+TbsvM8tT2aDeJSIekrQ+cLmkv0bEtfULSJoGTAPYdNNNB7hMM7P2VarrIyIeSv8fBy4EJvWwzPSI6IqIrs7OzoGt0sysjTVsUUtaExgWEYvT5bcAXxv0yjK04QEnVF2CmbWhMl0fGwAXSqotf15EXDqoVZmZ2QsaBnVE3Ats14RazMysBx6eZ2aWOQe1mVnmHNRmZplzUJuZZc5BbWaWOQe1mVnmHNRmZplzUJuZZc5BbWaWOQe1mVnmHNRmZplzUJuZZc5BbWaWOQe1mVnmHNRmZplzUJuZZc5BbWaWOQe1mVnmHNRmZplzUJuZZc5BbWaWudJBLalD0hxJFw9mQWZmtrL+tKgPBe4YrELMzKxnpYJa0hhgH+CMwS3HzMy6K9ui/i7wRWDFINZiZmY9aBjUkt4OPB4RsxssN03SLEmzFi5cOGAFmpm1uzIt6snAOyXNB34GTJX0P90XiojpEdEVEV2dnZ0DXKaZWftqGNQRcXREjImIscB+wFUR8aFBr8zMzACPozYzy97w/iwcETOBmYNSiZmZ9cgtajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy56A2M8ucg9rMLHMOajOzzDmozcwy1zCoJY2UdJOkWyTNk/TVZhRmZmaF4SWW+ScwNSKekTQCuF7S7yLiT4Ncm5mZUSKoIyKAZ9LVEekvBrMoMzN7Uak+akkdkuYCjwOXR8SNg1uWmZnVlArqiFgeEdsDY4BJkrbuvoykaZJmSZq1cOHCga7TzKxt9WvUR0Q8CVwN7N3DvOkR0RURXZ2dnQNVn5lZ2ysz6qNT0jrp8iuAPYG/DnZhZmZWKDPqYyPgbEkdFMF+fkRcPLhlmZlZTZlRH7cCOzShFjMz64H3TDQzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy1zDoJa0iaSrJd0uaZ6kQ5tRmJmZFYaXWGYZ8IWIuFnSKGC2pMsj4vZBrs3MzCjRoo6IRyLi5nR5MXAHsPFgF2ZmZoV+9VFLGgvsANw4GMWYmdlLlQ5qSWsBFwCHRcTTPcyfJmmWpFkLFy4cyBrNzNpaqaCWNIIipH8SEb/qaZmImB4RXRHR1dnZOZA1mpm1tTKjPgT8GLgjIr49+CWZmVm9Mi3qycCHgamS5qa/tw1yXWZmljQcnhcR1wNqQi1mZtYD75loZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZWeYaBrWkGZIel3RbMwoyM7OVlWlRnwXsPch1mJlZLxoGdURcC/y9CbWYmVkP3EdtZpa5AQtqSdMkzZI0a+HChQO1WjOztjdgQR0R0yOiKyK6Ojs7B2q1ZmZtz10fZmaZKzM876fAH4EtJC2Q9PHBL8vMzGqGN1ogIvZvRiFmZtYzd32YmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mljkHtZlZ5hzUZmaZc1CbmWXOQW1mlrlSQS1pb0l3Srpb0lGDXZSZmb2oYVBL6gBOAd4KbAnsL2nLwS7MzMwKZVrUk4C7I+LeiPgX8DPgXYNblpmZ1ZQJ6o2BB+uuL0jTzMysCYYP1IokTQOmpavPSLpzoNadmfWAJ5p1Z/pms+6pbXj7tbambb8Ktt1mvc0oE9QPAZvUXR+Tpq0kIqYD0/tdWouRNCsiuqquw1aNt19ra9ftV6br48/A5pLGSVoN2A+4aHDLMjOzmoYt6ohYJukQ4PdABzAjIuYNemVmZgaU7KOOiN8Cvx3kWlrFkO/eGeK8/VpbW24/RUTVNZiZWR+8C7mZWeYc1GZmmXNQ25AmaZiknauuw+zlcB91SZL2AbYCRtamRcTXqqvIypI0JyJ2qLoOW3Xt/v5zi7oEST8EPgh8FhDwfvrYi8iyc6Wk90lS1YVY//n95xZ1KZJujYht6/6vBfwuIt5cdW3WmKTFwJrAcuA5ijd7RMQrKy3MSvH7bwCP9THEPZf+PytpNLAI2KjCeqwfImJU1TXYy9L27z8HdTkXS1oHOBG4GQjgjGpLsv6Q9E5g13R1ZkRcXGU91i9t//5z10c/SVodGBkRT1Vdi5Uj6QRgR+AnadL+wKyIOLq6qmxVtOv7zz8mliDp/ZJqX5+PAM6U5FEEreNtwJ4RMSMiZgB7A/tUXJOVJOkzqUVNRPwTGCbp4IrLaioHdTnHRMRiSbsAewA/Bn5YcU3WP+vUXV67sipsVXwyIp6sXYmIfwCfrLCepnNQl7M8/d8HmB4RlwCrVViP9c/xwBxJZ0k6G5gNHFdxTVZeR/3QynQe17Z6/7mPugRJF1OcLGFPYCLFr9A3RcR2lRZmpUnaiKKfGopt92iV9Vh5kk6kGDf9ozTpP4AHI+IL1VXVXA7qEiStQdGv+ZeIuCu96beJiMsqLs36IGliX/Mj4uZm1WKrTtIwinDePU26HDgjIpb3fquhxUFdkqTtgNoA++si4pYq67HGJF3dx+yIiKlNK8bsZXBQlyDpUIofL36VJr2Hoq/65OqqMhvaJJ0fER+Q9BeKsdMriYhtKyirEg7qEiTdCuwUEUvS9TWBP7bTC6WVSRoBfJq6HV6AH0XE85UVZQ1J2igiHpHU43E9IuL+ZtdUFe+ZWI54ceQH6bIP8NM6TgNGAKem6x9O0z5RWUXWUEQ8kv63TSD3xkFdzpnAjZIuTNffDcyosB7rnx27jdC5SpJ/Y2gRkt4LfBNYn6KB1HYH1XLXR0lpBMEu6ep1ETGnynqsPEk3A++PiHvS9dcAv4yIPkeFWB4k3Q28IyLuqLqWqrhFXYKkcyPiwxQHhOk+zfJ3BHC1pHspWmObAR+ttiTrh8faOaTBQV3WVvVX0p5Rb6ioFuuniLhS0ubAFmnSnemYEdYaZkn6OfBr4IXtFhG/6v0mQ4t3Ie+DpKPTQee3lfS0pMXp+uPAbyouz0qS9BngFRFxa0TcCqzRbgf1aXGvBJ4F3gK8I/29vdKKmsx91CVIOt6HxGxdkuZGxPbdpvk8itYy3PVRzn9J+hAwLiK+LmkTYKOIuKnqwqyUDkmK1Cppx4P6tCJJX4yIb0k6mZ53ePlcBWVVwkFdzinACmAq8HXgmTRtx75uZNm4FPi5pPqD+lxaYT1WTu0HxFmVVpEBd32UIOnmiJhY/3VZ0i0+el5r8EF9rNW5RV3O8+nrcu2rcydFC9taQESsoNgT8bSqa7H+k/S/vLTr4ymKlvaPImJp86tqLgd1Od8HLgTWl3QcsC/wpWpLskb6OKhPbc82H6ulNdwLdAI/Tdc/CCwGxgOnUxwSYEhz10dJkiZQfHUWcGW7D8BvBT6oz9Ag6c8RsWNP0yTNi4itervtUOFx1CVIei1wX0ScAtwG7Fk72ablq3ZQH+AJijOC3A+sDmwHPFxZYdZfa0natHYlXV4rXf1XNSU1l4O6nAuA5ZJeR3E6oE2A86otyfrhWmCkpI2Byyi+Kp9VaUXWH58Hrpd0taSZwHXA4elww2dXWlmTuI+6nBURsSwdxesHEXGyJB+UqXUoIp6V9HHg1DQ2d27VRVljacTOKGBzYEKafGfdD4jfraSwJnOLupznJe0PfAS4OE0bUWE91j+StBNwIHBJmtZRYT1WUhqx88WI+GdE3JL+hvwoj+4c1OV8FNgJOC4i7pM0Dji34pqsvEOBo4ELI2JeOsxpX+dTtLxcIelwSZtIenXtr+qimsmjPvpJ0kSfvbp1pPHv34yIw6uuxVaNpPt6mBwR8ZqmF1MRB3U/1fZSrLoOK0/SnyLiTVXXYbaq/GNi//lcia1njqSLgF8AS2oT2+l4xq1I0tSIuCr9iP8S7bT9HNT999WqC7B+GwksojioVk0AbfNGb1G7AVdRHH+6u7bafu76KEHSZGBuRCxJhzudCHzPe7aZDT5JHe1+AC2P+ijnNOBZSdtRDL6/Bzin2pKsLEnjJV0p6bZ0fVtJPlZL67hP0nRJu0tqy65HB3U5y9JB598FnJJ2JR9VcU1W3ukUw/OeB0in49qv0oqsPyYAVwCfoQjtH0japeKamspBXc5iSUcDHwIuSXtLeYeX1rFGD2fjWVZJJdZvEfFsRJwfEe8FdqA4h+I1FZfVVA7qcj5Icfbjj0fEo8AY4MRqS7J+eCIdWKt2PPF9gUf6vonlRNJukk4FZlP8OPyBiktqKv+YaENe2hNxOrAz8A/gPuBA/xjcGiTNB+YA5wMXRcSSvm8x9Dio+yDp+ojYRdJiej7w/CsrKs36oTZqIB1tbVhELK66JitP0isj4ul0uS33DHZQ25An6QHSCW6Bq8Iv+pbVrnsGu4+6AUkdkv5adR32srT9qIEhxMPz7KXSQPs7688wYa3FowaGlLbcM9hBXc6rgHlpp4mLan9VF2XltfuogVYmaXL6fQGK03J9u7fzYA5V7qMuQdJuPU2PCLfKWoBHDbQ2SbdSnOdyW+BM4MfAByKix/flUOSgtiHPowZaW+0HRElfBh6KiB+324+KPnpeH3oYlvfCLDw8r2XUQjo5g+KgWtY66vcM3rUd9wx2UPchInw8j6GnLUcNtLgPAgeQ9gxOP+y31Z7B7vqwtiLp3RHx66rrMOsPj/qwIc+jBlqTpOvT/8WSnq77Wyzp6Ua3H0rcorYhz6MGrNW5RW3twMcTb1HeM7jgoLZ24OOJtyjvGVzwqA9rB20/aqDF1fYMvomVzyL/zupKai73UZtZ1rxnsIPahjAfT9yGCge1mWXJewa/yEFtQ5qkDmBeREyouhazVeVRHzakedSADQUe9WHtoO1HDVhrc1BbOzim6gLMXg73UZuZZc4tahuyPGrAhgq3qM3MMudRH2ZmmXNQm5llzkFtLU3ShpJ+JukeSbMl/VbSeEm3VV2b2UDxj4nWsiQJuBA4OyL2S9O2AzaotDCzAeYWtbWyfwOej4gf1iZExC3Ag7XrksZKuk7Szelv5zR9I0nXSpor6TZJb04HqT8rXf+LpP9s/kMyeym3qK2VbQ3MbrDM48CeEbFU0ubAT4EuiuNT/z4ijkvHA1kD2B7YOCK2BpC0zuCVblaeg9qGuhHADyRtDywHxqfpfwZmSBoB/Doi5kq6F3iNpJOBS4DLKqnYrBt3fVgrmwe8ocEy/wk8RnFy2y5gNYCIuBbYFXgIOEvSRyLiH2m5mcCngDMGp2yz/nFQWyu7Clhd0rTaBEnbApvULbM28EhErAA+DHSk5TYDHouI0ykCeaKk9YBhEXEB8CVgYnMehlnf3PVhLSsiQtJ7gO9KOhJYCswHDqtb7FTgAkkfAS7lxaPnTQGOkPQ88AzwEWBj4Mx08luAowf9QZiV4F3Izcwy564PM7PMOajNzDLnoDYzy5yD2swscw5qM7PMOajNzDLnoDYzy5yD2swsc/8HSBgpnu7+wbYAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "markdown", "source": [ "## Confidence Interval for Regression" ], "metadata": { "id": "_TrTteh49cEc" } }, { "cell_type": "markdown", "source": [ "It is automatically generated with `seaborn`. It is computed with a bootstrap(!)." ], "metadata": { "id": "YlUEjP4d99r_" } }, { "cell_type": "code", "source": [ "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "\n", "sns.lmplot(data = df, \n", " x = 'SepalLength', \n", " y = 'SepalWidth',\n", " hue = 'Class')\n", "\n", "plt.show()" ], "metadata": { "id": "C8kEOB9as8uq", "outputId": "3f2949a1-e8e9-4de1-9a7f-0fcabb97db4d", "colab": { "base_uri": "https://localhost:8080/", "height": 369 } }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAFgCAYAAAAsOamdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5zVdZ348dfnXOfMjeswwDAIKKhgeAE1ERDUNsvEzcpsN4stS1tLq622bH9oVKxubqVtF9JaslqxiyZmWRkgqImAojWCYKgMA8wMzPXMuX3P9/v+/fE9M8yZ2zlzOXN9Px+PeQzzvZ3PwDDv8/1835/324gISiml1FjjGeoBKKWUUkNBA6BSSqkxSQOgUkqpMUkDoFJKqTFJA6BSSqkxSQOgUkqpMSnnAdAY4zXGvGiM+W0X+1YbY2qNMXtSHzfkejxKKaUUgG8QXuNWYC9Q3M3+h0Tkk9le7IorrpAnnnhiQAamlFIDxAz1AFTv5fQO0BgzA7gSuH+grnn8+PGBupRSSqkxLNdToN8GvgA4PRzzHmPMy8aYXxljyrs6wBjzcWPMLmPMrtra2pwMVCml1NiSswBojHkXUCMiu3s47DFglogsBP4E/KSrg0TkhyKyWEQWl5SU5GC0Simlxppc3gFeDKwyxrwBbAQuNcb8rP0BInJCROKpL+8HFuVwPEoppVSbnAVAEfmSiMwQkVnAdcBmEflg+2OMMdPafbkKN1lGKaWUyrnByAJNY4xZC+wSkU3ALcaYVUASqANWD/Z4lFJKjU1mpLVDWrx4sezatWuoh6GUUu3pMogRSCvBKKWUGpM0ACqllBqTNAAqpZQakwY9CUapVlv31bB+20Eq6yOUT8jnxuVzWHHGlKEellJqjNA7QDUktu6rYc2mCmqaY4wP+alpjrFmUwVb99UM9dCUUmOEBkA1JNZvO4jfa8gP+DDG/ez3GtZvOzjUQ1NKjREaANWQqKyPEPJ707aF/F4O10eGaERKqbFGA6AaEuUT8oladtq2qGUzY0L+EI1IKTXWaABUQ+LG5XOwbCGSSCLifrZs4cblc4Z6aEqpMUIDoBoSK86YwtpVC5hSlEdj1GJKUR5rVy3QLFCl1KDRZRBqyKw4Y4oGPKXUkNE7QKWUUmOSBkCllFJjkgZApZRSY5IGQKWUUmOSBkCllFJjkgZApZRSY5IGQKWUUmOSBkCllFJjkgZApZRSY5IGQKWUUmOSBkA1rInIUA9BKTVKaQBUw1p9xBrqISilRikNgGrYiiSStMSTQz0MpdQopQFQDUsiwolwYqiHoZQaxTQAqmGpMWph2c5QD0MpNYppP0DVb1v31bB+20Eq6yOUT8jnxuVz+tXnL2k7NOizP6VUjukdoOqXrftqWLOpgprmGONDfmqaY6zZVMHWfTV9vmZdJIGj2Z9KqRzTAKj6Zf22g/i9hvyAD2Pcz36vYf22g326XsyyCcc08UUplXsaAFW/VNZHCPm9adtCfi+H6yN9ut6JFk18UUoNDg2Aql/KJ+QTtey0bVHLZsaE/F5fqzlmEe9wLaWUyhUNgKpfblw+B8sWIokkIu5nyxZuXD6nV9dxHKFO7/6UUoNIA6DqlxVnTGHtqgVMKcqjMWoxpSiPtasW9DoLtD6SwHY08UUpNXh0GYTqtxVnTOnXsod40qZJE1+UUoNM7wDVkDsRTmjRa6XUoNMAqIZUc8wipokvSqkhoAFQDRlbE1+UUkNIA6AaMida4pr4opQaMpoEM0YMdL3O/ookklrxRSk1pPQOcAzIRb3O/nAc4XizTn0qpYaWBsAxYKDrdfbXiZYESUdbHSmlhpYGwDFgoOt19kc0YdMc01ZHSqmhpwFwDBjIep394TjC8XB8UF9TKaW6owFwDBioep39VRdJ9LrLu2aJKqVyRQPgGDBQ9Tr7I5qwaYr2burTsh0+/dAe7t9+UCvFKKUGnC6DGCP6W6+zP/o69fm9rX9nT2UDeyobOH/WRM4uH5+D0Smlxiq9A1Q515epzyf+doxH9xwB4JbL5mrwU0oNOA2AKqdiVu+nPl891sy3ntwPwJJTJ/Hpy+bmYmhKqTFOA6DKGRGhtrl3U58NkQS3b6rAsoWy8SH+48oz8XhMjkaolBrLcv4M0BjjBXYBVSLyrg77gsADwCLgBPB+EXkj12NSg6OupXdTn7YjrP3tXmqa4+T5Pbxv0Qy+/MjfqA3Hh0X5NqXU6DIYd4C3Anu72fdRoF5ETgO+Bdw1CONRgyBm2TT2curzh9sOsqeyAYD3nDuDh3ZVcqIlPizKtymlRp+cBkBjzAzgSuD+bg65GvhJ6s+/Ai4zxuh81wjXl6nPP++t4Ze7DwNw3fnlVBxpwucxhPzDo3ybUmr0yfUd4LeBLwDdzYOVAZUAIpIEGoFJHQ8yxnzcGLPLGLOrtrY2V2NVA6Q+YvVq6vPvNWHu/uOrACw6ZQIfXTqbo01R8vzpP55DVb5NKTU65SwAGmPeBdSIyO7+XktEfigii0VkcUlJyQCMTuVKPNm7qc+mqMWaTRXEkw5Ti/P4jyvPxOsxTCsOEbPSg+hQlG9TSo1eubwDvBhYZYx5A9gIXGqM+VmHY6qAcgBjjA8Yh5sMo0ag1qnPbKu22I6w7nd7OdoYI+Dz8JVV8xkX8gPuNGjSEaLW0JZvU0qNXjkLgCLyJRGZISKzgOuAzSLywQ6HbQI+nPrze1PHaM2rEaohYpFIZj/1ueHZN3j+jXoA/u1t85hbWtS274I5E7n10rlMKggOWfk2pdToNuil0Iwxa4FdIrIJ+BHwU2PMa0AdbqBUI5BlOzT0Yupz+4Hj/HzHIQCuOa+Mt80v7XTMBXMmcvHcyZRP1GlPpdTAG5QAKCJbga2pP69ptz0GvG8wxqBy60Q4kfXU55snWrjz9/sAOHvGOG7SaU2l1BDQSjCq38LxJJFEMutj/9+jFUQtm5LCIGuumo/Pqz+GSqnBp795VL84jlAXTmR3rAh3/n4fh+uj+L2GO1bNZ0J+IMcjVEqprmkAVP1SH0mQdLJLfPn5c4d49u9uku+tl83lzGnFuRyaUkr1SPsBqozufXI/9z/9Oi0Jm4KAlxuWzuaWy+cRT9o0xbKb+nzu4Ak2PPsGAFctnMY73zIthyNWSqnMNACqHt375H7u2fwaHgM+j7sY/Z7NrwHw3sXlWSW+HK6P8PXf7UWA+dOKuHnlaTketVJKZaZToKpH9z/9eir4efAYT+oz3Lf9IDHLznh+NGGz5tEKWuI2EwsC3H7VAgI+/bFTSg09/U2ketSSsOnYjs8gtCQyBz8R4b/+8CpvnIjg9Rhuf9d8SoqCORqpUkr1jgZA1aOCgBenwyynI25h6kwe2lnJU/vd4uU3rziVt8wY1+vXDwUyv45SSvWFBkDVoxuWzsYRSDoOjjhYto0jcO2iGT2et+uNOu5/+nUA3r6glKvPmd7r1y7K8zO5UO8YlVK5oUkwqke3XD4PcJ8FhuNJ8v1e3rdoBtcvmdXtOccaY3zt8b04AvNKC/n0ZXPpbZvH4pAGP6VUbpmRVnt68eLFsmvXrqEexph0tDFKNMOzv5hlc8vGPbxWE6Y4z8f66xdRWpzXq9cZnx9gYoEukFcjijbyHoH0DlBlpTFiZQx+IsI3/7Sf12rCeAysuWp+r4PfxIIA47U6jFJqEGgAVBnZjlAfyVzu7JEXq3hybw0AH18+h/NmTujV60wqDLb1A1RKqVzTAKgyqmtJ4GSYKn/pcAPff+ogACtPL+F9GZJkOiopClKUp8FPKTV4NACOIp/Z+AKbXj6G7Qhej2HVwql867rz+nXNmGXTHOu5z19tc5y1j72C7QhzJhfwubefnlXSy/MH69i4q5Ka5hinTCzgxuVztOGt6pfth7ezoWIDVeEqygrLWL1gNctmLMv5uWpk0mUQo8RnNr7AI3uOYqcW7dmO8Mieo3xm4wt9vqaIcDwc7/GYRNLhjscqqI9YFAZ9fOXqBVmtEXz+YB33bD5AYzTBxPwANc0x1myqYOu+mj6PV41t2w9vZ92OddRGaykOFFMbrWXdjnVsP7w9p+eqkUsD4Cix6eVjABhz8qP99r6oa0mQSPbc6eHezQfYe7QZA3z5yjMoGx/K6tobd1WS5/dQGPRjjCE/4MPvNazfdrDP41Vj24aKDfi9fkK+EMYYQr4Qfq+fDRUbcnquGrk0AI4SdsdyLRm2ZxJJJGmM9jz1+duXj/C7v7oB9iNLZ3Hh7ElZXdtjDLXNMQoC6TPwIb+Xw/WRPo1XqapwFXne9KzjPG8eVeGqnJ6rRi4NgKOEt2PBzgzbe2I7Qm1zz1Ofrxxp4juprhBLT5vMP10wM6trG2MoLc5j5sQCoh2KaUctmxkT8ns9XqUAygrLiNmxtG0xO0ZZYVlOz1UjlwbAUWLVwqkAiJz8aL+9N06E4z3eOda1JLj9sQosW5g5MZ9/vyK7pBeAKUVBQgEvNy6fg2ULkUQSEfezZQs3Lp/T6/EqBbB6wWos2yKajCIiRJNRLNti9YLVOT1XjVwaAEeJb113Hu8+Z1rbHZ/XY3j3OdN6nQUajicJx7tvcmvZDl95rIIT4QT5AS9rVy2gIJhdMnFJUbDt2BVnTGHtqgVMKcqjMWoxpSiPtasWaBao6rNlM5Zx24W3URIqoSnRREmohNsuvC2rTM7+nKtGLi2FptrYjnC4PtLj3d+9fz7Ab/YcAeCrVy/g4tMmZ3VtXeenRjkthTYC6TpA1SbT1OcfK461Bb8PvnVmVsHPGENJUZDCLO8SlVJqsOhvJQVAS4apz/3VzXzzyQMAXDB7Ih++aFbGaxpjmNJu2lMppYYTfQaoSCSdHrM+GyMWax6tIJF0mD4+jy+/84yM2aUa/JRSw53+dlLUhuPd1vq0HeGrj79CTXOcPJ+HtasWZHyW5y51CJIf0B8vpdTwpb+hRpGt+2pYv+0glfURyifkZ1VbszlmEbdsty7nzkqONkWZVhziuvPLuWDORO7bfpAXDjUAEPR7+J/Nf2/b1xWPMUwdl0deFuXQlFJqKGkW6CixdV8NazZV4PcaQn4vUcvGsqXHpQVJ26GqIcpfXjvBPZsP4PMY8vweYpZD0hFWzCvhwZ2VABQFfUwdF2zbd+ulczsFQQ1+agzTLNARSJ8BjhLrtx3E73VramZbW7M2lfW5cWclPo8bOA3uZ0eEh3a5wS/o8zC1ONi2z+cxbEwFxlYa/JRSI40GwFGisj7SqQtDT7U1m2InO7wfbYqS5z/5o2A7kuoBCB4DZePz0iq95Pk9HGuKtn2twU8pNRJpABwlyifkZ11bM2k71IVPdnifVhwiZrldH0SEo00xLFswwGklhVh2+jR5zHKYWux2fdDgp5QaqTQAjhK9qa15okOH9+vOLyfpCFHL5kRLgkjqzvB9i2bwkYtnt+0T3M9JR7ju/HK8Hg1+SqmRSwPgKJFtbc1wPElLhwXvF8yZyK2XzsXrMdRF3BZIS+ZM4qYVp7btm1QQpDmWZFJBkFsvnctFp03S4KeUGtF0GcQosuKMKT0ue3AcSZv6bG/quDxqUovh31I2jjtWzW/bd8GciWkZn613fkGfBj+l1Mild4BjyImWBEmnc4f3lniSNZsqiCRsJhUGuP2q+fi8Xf9oaPBTSo0WGgDHiGjCpjnWucO7I8KdT+zjUF0Ev9fwlasWMLEg0OU1WpvZavBTSo0GGgDHAMt2qGmOdbnv/3Yc4pnXTgDwqUvnMn96cZfHGWOYWqzP/JRSo4cGwDGgtrnrNkc7Xj/B/z7zBgBXvmUa71o4rcvzW2t7hgIa/JRSo4cmwfRRX+puDsXrNsUsYh3WBwJU1Uf5+uP7EODMaUV86tLTujzfYwxTtLC16sL2w9vZULGBqnAVZYVlrF6wWjuoqxFF7wD7oLXuZk1zjPEhPzXNMdZsqmDrvpph9bq2I9S3dM76jFo2t2+qIBxPMiHfzx1XLSDg6/yj0JrwosFPdbT98HbW7VhHbbSW4kAxtdFa1u1Yx/bD24d6aEplTQNgH/Sl7uZQvG5XHd5FhLv/8CoHj7fg9Rhuv2o+JUXBTud6Ugkv+sxPdWVDxQb8Xj8hXwhjDCFfCL/Xz4aKDUM9NKWypgGwD3pbd3MoXjfcTYf3X+w6zJZXawH4xCWnsnDG+E7HaHkzlUlVuIo8b17atjxvHlXhqiEakVK9pwGwD3pTd3MoXjdpO5wId+7w/sKb9dy33b1bfNv8Ut597vROx2jwU9koKywjZqdnFsfsGGWFZUM0IqV6TwNgH/Sm7uZQvG5tF1Ofx5pirP3tKzgCp00p5LOXz03r8AAa/FT2Vi9YjWVbRJNRRIRoMoplW6xesHqoh6ZU1jQA9kG2dTeH4nUbIyfbHLWKWza3P1pBUyxJcZ6PtVcvINghyBl95qd6YdmMZdx24W2UhEpoSjRREirhtgtv0yxQNaJoR/hRJJ60OdIQo/2/qYhw1xOv8sdXqvEYuOs9C1l0yoS081rX+Wm2p1J9ph3hRyC9AxwlRISapjgd39D8Zs8R/vhKNQA3LJvTKfgBlBRp8FNKjT0aAEeJ4+EElp1e6Pqvhxv53ta/A7BiXgnvXzyj03klRUEKgxr8lFJjjwbAUSAcT3YqdF3bHOeOxyqwHWH25AI+//bTOyW9TMgPUJTnH8yhKqXUsJGzt/7GmDxgGxBMvc6vROT2DsesBr4BtC4e+h8RuT9XYxoN7n1yP/c//TotCZuCgJd/WTKLd5/n3tn99Nk3+MXuw0QSNsaAI1AQ9PKVVfP56+FGNu6s5GhTlGnFIT5y8SxWnTswKetDVRZOKaX6I5dzX3HgUhEJG2P8wNPGmN+LyHMdjntIRD6Zw3GMGvc+uZ97Nr+Gx4DPA5FEku9seY2mqHv395Pn3sRjaAt+ABfNnsSR+hj3bD6Az2MozvNRH41z95/2Uxzy9ztQtZZn83tNWnm2taBBUI04SSeJz6OPBMaKnP1Li5uNEU596U99jKyU02Hm/qdfTwU/d+baeISk4/CL3YcB8BgAg5NKhPEY+MvBExwPJ/B5DCG/F4/HUOTzErVs1m872O8g1b48G0B+wEckkRyQays1WGzHpj5ej+3YlBaUDvVw1CDJ6TNAY4zXGLMHqAH+JCI7ujjsPcaYl40xvzLGlHdznY8bY3YZY3bV1tbmcsjDWkvCTgU5N+tTcO/2opZN1LIRIOmcDH6e1L6jTVHy/B6MMfg8xq3dOECl24aqLJxSA6U50cyR8BHCiXDmg9WoktMAKCK2iJwDzAAuMMac1eGQx4BZIrIQ+BPwk26u80MRWSwii0tKSnI55GGtIODFkZPBD0DEDTh5Pg+tSaAG8KUiZcjvZVpxiHjSwe81bYkwA1W6bajKwinVXwk7wbGWY5yInsCWzi3D1Og3KFmgItIAbAGu6LD9hIi0Fq28H1g0GOMZqW5YOhvbcac9HXGwHQdH4L3nlqVlc3o94IjgCFy7aAYfuKAcETcwDXTptqEqC6dUXzniUBer42jLUWLJWOYT1KiVyyzQEsASkQZjTAh4G3BXh2OmicjR1JergL25Gs9o8KnL5tIUtXhwZyVRyybk93Ltohk0xpNUN7vvI4I+D5bttO27fsksphTnUVqcx/ptBzlcH2HGAGZqrjhjCmshJ9dWaqCFE+G2Z31K5awUmjFmIe6Uphf3TvMXIrLWGLMW2CUim4wx/4kb+JJAHfAJEdnX03XHcim0mqZYpxZHT+6tZt3v3L+yf75wJh9dOjtt/7iQn0mFnfv9KTWWxO04ddE64nbnLinthXyhvibBaCm0ESiXWaAvA+d2sX1Nuz9/CfhSrsYwmtS3JDoFvwPVzdz9x/0AXDBrAquXzErbHwp4NfipMa01u1MTXFRXdMHLCBBJJKmPJNK2NUYt1myqIJF0mDYujy9feSZez8k3oX6vhylFeR0vpdSY0RhvpDHeiCNO5oPVmKQBcJhL2g61zenTNrYjfO23r1DdFCfP52Ht1QvSkmCMMZQUBdMColJjhWVbHI8ezzjdqZQGwGFMRKhu7tzc9kdPv87uQw0AfO7tp3NqSWHa/smFAe3rp8YcEXHv+hKNnbqiKNUVDYB91J/6lx3red6wdDa3XD6v03HHwwniHdbYrX2sgq37jwPuWr+qupMLzp8/WMevXjjMsaZYpzENxniHlf1/gmfvgYY3YfwpsORWmPe2rE7dfng7Gyo2UBWuoqywjNULVrc1eu1pnxo6EStCXayOpJPMfLBSKVllgRpjLgbuAE7BDZoGt9rZoC/2Gg5ZoO3rX4b8blkxy5asusK3r+fpSdXsdARuvfS0tKDSFLM43mHq894n9/Obl9xVIwb3fAE+/NZTOH1qMfduOUDI7+00JiDn4x1W9v8Jfv858ATAHwIrCk4C3nF3xiC4/fB21u1Yh9/rJ8+bR8yOYdkWt114G0C3+zQIDg3LsaiL1hFNRgfkepoFOrZkGwD3AZ8BdgNttyQiciJ3Q+vacAiAH/jhc9Q0x9KayEYSSaYU5fHgx9/a47kL7/gDUctuq+cJkHTcdXsv3/F2AGKWzdHG9M7u4ViSq7/7TFsFmECqqovtOAR9XuaVFtEYTVAQPPkssHVMQE7HO+xseBc0V0OgXTWaRASKSmH1b3s89aN/+Ci10VpCvlDbtmgySknIrUDU3b4fvf1HA/s9qB454tAYb6Qp0TSg050aAMeWbKdAG0Xk9zkdyQhSWR9hfCi9j1629S9bEja+DvV3PMbdDm6CS8fO7o4I636/ty34tS9p1loLtKY5xoT8QJdjEsjZeIelhjchb0L6Nn8IGg5lPLUqXEVxoDhtW543j6qw27Grp31qcOhidjVQeiyFZow5zxhzHrDFGPMNY8xFrdtS28ek/tS/bK3n2Z4j7nZw79SSTnra9gPPvslzB+uA1iLXJ99sSurcmRMLuh1TLsc7LI0/xZ32bM+KwviZGU8tKywjZqeXx4rZMcoKy3rcp3Ivbsc5Gj7K8ehxDX5qQGSqBfrfqY8LgcXAunbb7s7t0Iav/tS/vGHpbByhrZ5nMlXP84alszkejhPtcGf1zGvHeeC5NwE4o7QIIFUD9GQt0I8tm9PjmHI13mFrya3uM79ExH2HkIi4Xy+5NeOpqxesxrItoskoIkI0GcWyLVYvWN3jPpU7SSfJ8ehxjoaP6tIGNaCyfQY4R0QOZto2GIbDM0A4mVXZl/qXXWVV/svS2Z3W+1XWRfjXn79AS8LmrOnF/Pe1Z7NxxyF+sfswUcsmP+DlY0tnc+vbTs84poEe77BNgGnVlgV6yL3z0yzQEUdEaEo0Depidn0GOLZkGwBfEJHzOmzbLSKD3r1huATAgRRP2hxpSE96iSSS3PzzF3mzLsKkwgDrP7iIiQUnn/F5PYbp40P4vYPS0EOpQRWxItTH67Fsa1BfVwPg2NJjEowx5gxgATDOGHNNu13FgNbZGgBdJb2ICHc98Spv1kXweQx3XDU/LfgBlBQFNfipUcdyLOpj9UQsbaisci9TFujpwLuA8cBV7bY3Ax/L1aDGCscRjjXFsOz06Z0Hn69k+wF3sfsnLz2NBdPHpe0fF/KnLWlQaqRrne5siDdoFRc1aHr8LSoijwKPGmMuEpG/DNKYxgS3zFmsU6WXnW/U8aOnXwfgnWdN5aqF09L2B3yeTneDSo1ksWSME7ETgz7dqVSmKdDv4BYbwRjzgY77ReSWHI1rVBMRqps6Z3weaYjytcfd9X6nTy3ilsvmtq33A7fI9b4jTXz+ly93WdKsP+XOVHa277iXDXsfoMqJU+YJsvrMD7Hswtz/N/j+nu/z070/JWJFyPfnc/2Z1/OJcz6R89fNpaSTpCHeoK2K1JDJ9BBpF271lzzgPOBA6uMcQG9D+uh4OEEkkV6zMGrZrNlUQXMsyfiQn69cNZ9AhxXoe480svbxvdQ0xxgf8lPTHGPNpgq27qtpK8/W1T41MLbvuJd1FfdR68QpNh5qnTjrKu5j+457c/q639/zfda/vJ5oMorP+Igmo6x/eT3f3/P9nL5urtiOTV2sjqpwlQY/NaSyzQJ9DlgqIsnU135gu4j0XEcrB0Z6Fmhj1OJEOH25g4jw9d/tY/O+GjwG/vt9Z3N2+fi0YwqDPm7duKfbkmbQ93JnKjsf3bCYWidOyJwsAhAVmxJPkB+tzt3P5JIHl7QFv1ZJSRLyhXj2A8/m7HUHWutzvqZ4E7YMz4XsmgU6tmSbRjgBN/OzVWFqm+qFcDzZKfgB/OqFKjan7tQ+seLUTsHP7/UwuTBIZX2EUIc2R60lzXrapwZGlRMnz6T/l8kzHqqc3C7OjlgRvKT/23rxjqhMyRarhapwFfWx+mEb/MYCY8xUY8xGY8zfjTG7jTG/M8bMM8b8bajHNhSyTSW8E3jRGLMF953OctzuECpLkUSy00J3gBcP1bP+qb8DcPmZU7jm3PSyWq3NbT0eQ/mE/E53ee1LmvW0T/VfmSfY6Q4wJg5lnmBOXzffn+/eAbb772pjk+8f/v+2EStCY7xxRFRwccThr7V/5XD4MItKB32Jc84ZN6HgEeAnInJdatvZQJ9ueUeDrO4AReR/ccuhPQI8DFwkIj/J5cBGk5Z4kuoOa/0AqptifPW3e3EETisp5LNvm5eW9AJuEevW5ra5KnemsrP6zA9h4U57CkJUbKzU9ly6/szrERGSkkz7fP2Z1+f0dfsjloxxrOUYNZGaYR/8qsJV/OyVn/GxP32Mzzz1Gb7z4neGeki5shKwROQHrRtE5CWgsvVrY8wsY8x2Y8wLqY8lqe3TjDHbjDF7jDF/M8YsM8Z4jTEbUl//1RjzmcH/lvon40J4EdnXrvB161/UdGPMdBF5IbfDG/kiiSQ1zZ2DXyLpcMemV2iIWhTn+Vh79YJOXdyDfi/j8092cVhxxhTWQrclzXrap/pv2YW3cBsMehZoa7bnSMgCtWyLutjA9efLlcZ4I9sOb2NL5RYONBxI2xdLxojbcYLe3N7ZD4GzcJMae1IDvE1EYsaYucCDuHWg/wn4g4h83RjjBfJxkyHLROQsAGPM+O4uOlz1mARjjLlPRD6WmvrsSETk0twNrWsjKQkmmrA51hTrFPxEhG/8YT9PVBzDY+DOa97C4lkT071NuDEAACAASURBVI7xGEPZBC11pkYGRxwa4g00J5qH7UL2uB3n+aPPs7lyMy/UvJBWX7QkVMKK8hVcMesKLph2QV8uP+yTYIwxtwCzReQzHbbPAn4rImcZY8YB/4Mb3GxgnojkG2OWAz8Gfgb8RkT2GGMm4K4U+B3wOPBHkUEq2jpAMj0D/AKAiKwchLGMKs0xq8tnfgCbXjrKExXHAPjo0tmdgh/AZC11pgaLiNtYso+aE800xBqGZXKLIw5/O/43tlRu4Zkjz6TdmRb4ClhStoSV5StZMGkBHuNJa3Y8ClUA781wzGeAauBs3EdkMQAR2ZYKglcCG4wx3xSRB1LPEN8O3ARcC3wkV4PPhUwB8FVjzHHgGeBZ4BkR2Z/7YY1skUSS4+FEl/v+VtXId7e8BsDyuZO57vzyTscUBn0UBrXUmRoEiQhEjmfVK7GjWDJGfax+WD7je7PpTbZUbuGpw09xPHq8bbvXeFlcupiV5Ss5f+r5BLxjajnzZmCdMebjIvJDAGPMQqB9rcVxwGERcYwxHwY3/dgYc0pq+33GmCBwnjHmd0BCRH5tjHkV9+5wRMlUCm2KMWYesCT18W/GmBLgOdxg+F+DMMYRJWbZXSa8ABwPx7njsVdIOsIpk/L5whWnd0p68XncJQ9K5ZQItByHWCN4ejfTYNkWDfEGWqyWHA2ub+pidTxV+RRbD2/lYGN6p7bTJ5zOyvKVLC1byrjguG6uMLqJiBhj3g182xjz77h3d28An2532PeAXxtjPgQ8AbT+I68APm+MsYAw8CGgDPhfY9rWBn0p59/EAMtqIXzbwcacCrwTuBX34eegzxcM52eAiaTD0cYodscW6oBlO3z2Fy9RcaSJgqCX7/3TeZRP7JzGPn18qFMyjFIDKtECLbVgp6oReTwwMXO2cMJO0JRoGlbVW6LJKM8dfY4tlVt4qeYlHE4+gpqaP5WV5StZUb6C6YXTs7qeLoQfWzJlgbbe+V0ElAMHce/+PgiM+AzQ/tTO7HjuDUtnM7e0CNsRfvrsG21Na0N+L9cumsGJiEXFkSYAbnvHmV0Gv8I8X8bgp/U+U9oa3r4J40/pVcPbXMlUJzRXzXSzbuBbMJ3Vp/4jyybMP3nyG8/Aiw9AS023f4+xZIyGeAOxZCxt+67qXTx84GGqI9WU5pdyzdxrWFy6uN/fTya22LxU8xJbKrfwl6N/SZuCLfIXsbRsKSvLV3LGxDM6zbAo1V6mLFAHN9B9C3hERIa89MRA3QG21s70ew0hv5eoZWPZwtpVCzIGlI7nRhJJYpbDLZfO5dVjTfzkuTfxGDevQARsJ1VRHPjwRafw4SWzOl3T6zHMmJCP19P9f9j+jHlU2f8n+P3nwBMAfwisKDgJeMfdQxYEW+uE+nGrw8TEwQJuW/Axll14C9sPb2fdjnX4vX7yvHnE7BiWbXHbhbf1Kwj2dF3g5D7jJ2a1YEnSHdOURW7w23YXePyQN67T36Pt2NTH67u849tVvYsfvPQD/B4/AW+AhJ3AcixuOvumnARBEeH1xtfZUrmFbVXbqIvVte3zeXxcMPUCVsxYweKpi/F7/D1cqWd6Bzi2ZMq0mM7J5383GmN8uAHxL8BfRORgTycPZ+u3HcTvNW2VU/IDPiKJJOu3HcwYTNqfKyL4vV4sW9i4s5IDNc14DHhTz1UcBEmFv4vmTOL6i07p8pqTCoM9Br/+jnlUefYeN/gFUnfRgXxIpLYPUQDcsPcB/NBWJSZkvCA2G/Y+wLILb2FDxQb8Xn9blmHr5w0VG/oVAHu6LoDf4ydkfCA2IV8eJGNsOPgbNwC++BM3+PlD7ru11N+j8+y3aZy5mOZEc9pSgfYePvAwfo+foM99Xh30BSHpbh/IAFgbqeWpw0+xpXILh5oPpe2bP2m++1xv+lIKA4UD9ppq7MiUBHMMt/LLwwDGmHzcNNevALOBEfuwqrI+wvhQ+jvFbGtntp4rIiQdQUTI83s41hQlatm0rl4QESz75B32l955Bp4upmSyzfrsz5hHlYY3Ia9DKVp/CBoOdX38IKhKdYhor32d0KpwFcWB4vT93jyqwlX9e92erisOxd4QtAtied4gVZFUh5CmI9AuIcRGaPIHaW46hBNv7PF1qyPVFPrTg07AG6A6Ut2v7wfc8mnPHHmGrZVb+evxv7a9gQQoKyxjZflKLplxCVMLpvb7tdTYlukZ4Djc53+td4Hn4rZDegx3acSIlamuZjbn+r0enFTCS8xymFocojmWJJ50S2VZ7ZJhQn5Pl0HO5/EwKcusz/6MeVQZfwo0V5+8AwR3+q4PqfwDJVOd0LLCMmqjtWnrzGJ2jLLCsk7X6tXrdnXdZIyy0GRwbGpj9e6dX9trxinLT80WFE+HlhPY/jyacGgygiSj7vYMSvNLqY/Vt90BgpskU5rft7KSSSfJizUvsqVyCzuO7iDhnFxGNC4wjmUzlrGyfCVzx8/V53pqwGTKf34N+Fcgiltpa4aIvFVEPiMiv8r56HKoP7UzP75sNjHLoSWedGtCWjZJR7ju/HKuXTQDR8CyhdbHqwa4bnHn9X4Ak4sCGac+B2LMo8qSW91nVYmI+5A1EXG/XnLrkA0pU53Q1QtWY9kW0WQUESGajGLZFqsXrO7f63a8bqIFKxlh9ayrWD3nH7EkSTQZS71mDEuSrJ7zjwDY51xPvVhU2VEacRArCo4F52aubXrN3GuwHIt40l3yE0/GsRyLa+Zek/XYRYT99ftZ//J6Vj+xmrXPrWV71XYSToKAJ8CysmWseesaNlyxgRsX3si8CZ1r5SrVH71aBjEcDOQyiNaMyt7UzhQRaprjbNlbw8adlRxrijK1OMR155dzwRy3ossdj1aw7TV38a3fY/jghTO5vovEl6I8PyVFvVvz15cxj0ptWaCH3Du/sZ4F+rcfU9VcSVmohNVz/tF9xgdsr9nNhoO/oSpSQ1n+FFbP+UeWlJxDYyJMc7IFObwbXvkNROvcO79zPwSzLs7qdfuaBXqs5RhbK7ey9fDWtClgg+Etk9/CyvKVLJm+ZEi6XYyGJBhjTFhEunwoaox5VkSW5Oh1bxORdbm4dq5kygJ9DOj2ABFZlYtB9WQo1wG2Br+WeLLbY16rCfOpB18knnRYfMoE/vOat3R5h+f3epgxIaTvaFX/iEC03v3I8GZWRGiywjRa4fTkFo8HxnU9QzFQwokwTx95mi2VW3jlxCtp+2YWzWx7rleSX5LTcWQy2AFw1hcfvwL4PG5OxevAN96488on+nKttoF0EQCNMb7Whua50lPgHa4yZV7cPSijGCFqMwS/xqjFmkcriCcdpo3L4z+uPLPb6c2SoqAGP9U/8bBbxszO/HstbEWot5qwncGr12nZFruqd7Glcgs7q3eSdE6Oc2LeRJbPWM7KGSuZPW72mPy/kAp+3wXiQB0wDfjurC8+fnN/gyCAMWYF8FWgHjgDmNcapIwx04CHcBud+4BPiMj2DucvAP4XCOA+LnuPiBwwxnwQuCW1fQfuY7KvAyFjzB6gQkT+2RjzWU7WBr1fRL5tjCkAfgHMwE2i/KqIPGSMWQNcBYRwy27eKIMwPZkpC/SpXA9gpGiMWIR7CH62I3z98b0ca4oR9Hn4yqoFFIe6Xo+UzYJ3pbqVTLiBL5E5+9dyLE7EG4kNUr1OEWFf3T62VG5he9V2wtbJNYR53jwumn4RK8tXsrBkIV4z5v8PfB43+LX+Q0babe93AEw5DzhLRF7vsL2r9kYd3QTcIyI/N8YEAK8x5kzg/cDFImIZY74H/LOIfNEY80kROQfAGLMI+BfcPrIG2GGMeQqYAxwRkStTx7WmIf+PiKxNbfsp8C7cZMucyqricqov1H8C84G2lDIRGRPZF9GEzYmWnn+B/O8zr7PrzXoAPvcP8zhtStczAV6PYVKB1vpUfeA47rO6WGPG6c6EbdFkhWmxo4PSnuhI+AhbKrewtXIrxyLH2rZ78HDOlHNYUb6Ci6ZdRF67jFTFbNw7v/Yiqe0D5fkugh/ATuDHxhg/qfZGXRzzF+DLxpgZwMOpu7/LgEXAztRdewi3h2BHS3GLp7QAGGMeBpbhBvb/NsbchduCqfWuc6Ux5gu4gXgibueK4REAcW+Db8etCLMSN7KPiV49bnHrWI/HbDtQy/897/YKfu+iMi47s/tnCBMLss/6VKpNrAkiJyDDFGbUjtNkhYkme/6Z7cgk44ivd2/MGuONbK/aztbKrbxa/2ravjnj5rCyfCXLZyxnYl7ndl8KcJ/5TePknR+4AaCrgNVXXVYs76q9EdCM+3se4AYR+T9jzI7UMb8zxtyIezf3ExHpU+FrEdmfarD+TuBrxpg/A/+FW4R7sYhUGmPuoN2NVi5lGwBDIvJnY4wRkTeBO4wxu4E1ORzbkIskkt12dnj+YB0bd1ZSWd9CfcQC4Jzycdy4/NRurxcKeCnK8/dYz/MzG19g08vHsB3B6zGsWjiVb113Xm6+QTWgcpLlmYxDSy3bN/8HG2qeo8prKLOF1VPeyrJl/9F2WNSO05BoIm6nt+F68OUf82jdC0QRQhiunngeH1h4smVb4PgBxr+0ESNC9ft+lHE4cTvO88eeZ2vlVnZX707rATg5NJlLZlzCyvKVnFLcdcUjleYbuM8AwQ2C+UAwtT2numpvJCKfBh5pd8wc4KCI3GuMmQksBP4IPGqM+ZaI1BhjJgJFqbhgGWP8ImIB23ED6524QfPdwPXGmOlAnYj8zBjTANzAyWB33BhTiNuzcFCW2WUbAOOplhcHjDGfBKqAEZXt01tNMYsT4US3we+ezQfwGGiKJXEEPAbe9Zbp3d7deYxhcmEwrZ7n+JCfmuYYazZVsBZ4dM9hHtlztO0c25HU1y9oEBzm2tfkLA4UUxutZd2OddxGH2t9tsvu3L7tq6w7sQO/B4ododYD607s4LbtX2PRRf9Gk9XS5TO+B1/+MRvrdmMweDHEgI11u+Fl+PD0ZYzf8yD5h09mVAePvER8+tmdruOIQ8XxCrYc3sIzVc8QSZ68Ycn35XPx9IvdprKT3aayKjtv3HnlE7O++PjNDHAWaJZW0Lm9UUfX4gYtCzgGrBOROmPMfwB/TMUEC7gZeBP4IfCyMeaFVBLMBuD51LXuF5EXjTFvB76RqjNt4SbfNBhj7gP+lnqdnTn6njvJah2gMeZ8YC8wHjeraBzwXyLyXG6H19lgLINojFg9PvP77EMvcTwcoz5i0ZKwMbhZndPHhfjm+zv/AgG31ue4kJ8P/PC5TtVcIokkU4ryeP6NOmxH0ppzi7jPDf++7p0D9e2pHPjoHz7aqSJLNBmlJFTCj96e+c4qTTIO4Wo32QX46K/fRa3HfdgC7rqkFmCCwNf+YX23l7lu6yeJkV6v8Mx4nE80NHJx9OQUaWLibBou/hSRU1dCuwB2qOmQ+1zv8NZOTWXPm3IeK8tXcsG0Cwh6R88z7dGwDlBlL6s7QBHZCZCK+LeISHNORzWEGqM9Bz+Ao01RLNuhJeFO/0wpClIc8nGsKdrl8aGAl3GpjNCe6nl21UcQ6Ha7Gj4GpNZnN2v6qryGYkdwDDiAjfsf92iGZ8lRBG/q9/JZ8Tgfa2hkafvAN2E2DedcR2TWRW55OaA+Vs9Th59ia+VW/t7497TrzZswj5XlK1lWtmzMNpVVo0u2WaCLcRNhilJfNwIfEZHdORzboHOnPTOni+f7fbze5D5bHhfyMS7kJ2rZTC3u3B+4deqzVU/1PI80xroMdpo0M/z1u9anFXN78iUTnXZNtYVqj/twqFUCKM3wxiiE4bR4nJs6BL5XA34mXPx5IjMvBGOIORbPVW5lS+UW9tTsSWsqW5pfyoryFawsX9nvuqVKDTfZPgP8MfCvrSmrxpiluAFxYa4GNtjC8STHmzMHv8P1EY6m7vQCXg8lhYG0WqAdTcgP4PeenFa6cfkc1myqIJJIpvX0u3H5HKYWB3hkz9FOGe6rFmrV++Fu9YLVrNvhVoFq35cvq1qfkTr3ox0RIZyM0GiFedekc/hBw0sgQgA3+FnGcM2ErqfbAYI1+/h5XYxTm05mqO8L+PnBuGJKZyzl2pkX8HL9PrbW7OTZ4y+lPUMs9Be2NZU9c+KZY3KRuhobsn0G+KKInNth2wsiMuiZGbl4BthTtmd70YTNzf/3Am+ciFAU9DFzYj4nWuKdaoG2Cvq9lI3vfFfYUz1PzQIduXqdBWpb0HzMfeaX4ohDczJCkxVOq9qya9f3ebhuD9UeQ6kjXDPxHBYv/kSnSwZqX3WTW6peaNv2asDP98aPY0coxPJxZ5I3roynanZRlzjZ8shnfJw/9XxWlq9kceli/N6+N5UdyfQZ4NiSbQD8Nu4z+Adxn8G/H4gBPwMQkRe6P3tgDXQAjFk2RxtjGYOfiPCV377Ctv3H8XkM37z2bM4q6/45iDGG6ePzCPrGfLUL1ZVog7uuL/Vzl3Rsmqww4WSk2ya0PQnW7GPcSxvTAl980qk0nH0dh6fM46na3Wypfp43Wo6knTe/+FRWTL2ApaddRVGgqH/f0yigAXBsyXYKtHWu5fYO28/FDYiXDtiIBlHrIvds3gRs3FnJtv1uJtzNK0/rMfgBjA/5NfipzqyYW8bMcp/JWU6SRitMSzLSp4otwZp9jN/zIKEjL7Zti086lSML38vmgJctNc/z8us/S2sqOz1UwsrSC1gx5Xymhia7xbDHYPAzxuA1XnweX9vn0ZTRqjLLNgt0Za4HMtiiCTf4OVn80tn1Rh0/etotznDFgqmsOntaj8cHfB7G54/NKSTVjWTCveNLuMlTlmPRaLUMaOBrmTSHzfMu4Qm7gecO/YqEY7XtK/YXsrzkPFaWXsDcolPG1HM9j/Hg9/jxe/3u53Z/Ho2Gqh1SNlIL4e8Vkff24dytwOdEZMCmALPNAi0F1gHTReQdxpj5wEUi0ssFTsNDSzxJTXPmZ34ARxujfO3xvTgCp5cW8enLM3eknlyonR5Uip10A1/cXTkUs+M0JJr7XJw6WLOX8Xs2tgU+AfaUzOE30+eyOXqYhmN/bjvWb3xcOHkhK0vP57wJ8/F5RveMhNfj7RTg/B4/Pk+2E11D4I5xndohcUfjgC+Eb22HNFjBr7v2SyJyBLfSy2CMwSsiPdYOzPYnYwNu1ueXU1/vx22l0W0ANMbkAdtws7d9wK9E5PYOxwSBB3CLq54A3i8ib2Q5pqx0LDv2obeewunT3Ome1nJmR5uiTOsikSVm2dz+6Cs0xZKMC/m5Y9V8Ar6eK12MC/kzdnq498n93P/067QkbAoCXm5YOptbLp/X5Xg7NrzNtD8n2prPvumuF+tN89mtd8Fz33Vb9wQL4a03w4p/7/d1+9N8NtO5AybWBJHjiG0TteN86cVvs7XmeRwED4ZlJYv43PzV7rFVL8Arj0C4BgqnwPx3Q9nJ5KfXd93HpNeeZGHMzUA+4vPym5KZPF5UyCGrEZr2th07q2A6q8pWsqTkHAp8nZOwspWp4W1fG+L2x4s1L/LrA7+muqWaaYXT+OCZH+SS8kvwe/x4jCdnTYdzwg1+ndohcce4mwciCPanHVKqS8PLwGwRcVJtjPbhdnOYmRp3CW4Jt4+JyL5U5ZcY7qOxZ4wxjwL3pC4pwHJgEm4R7LNSXSjuAq7AXeJ6n4h8J1Vw++7UuHamxpb2jtEY8wHgNtxnr4+LyL+ntoeB9cDluBVqnu7x7yjLJJidInJ++2xQY8ye1tYX3ZxjgAIRCacqjj8N3Nq+eowx5l+BhSJykzHmOuDdIvL+nsbSmySY9mXHQn4v4XiSeNLh1kvnAnDP5gP4PIY8v4eY5ZB0hFsvncsFcyYiIvzn7/fx5N4aPAa+8d6FnDtzQo+vl02T23uf3M89m1/DY9zyaY64H7deehoLZ4xPG2/rEom1qxaw4owpnb6fjvtzYv+f4PefA08A/CGwouAk4B13Zw5WW++Cbf8FGDBeEBsQWP4FmH5en6+7fce9rKu4Dz+QZzzExMECblvwMZZdeEtaWbL2SxJuu/A2qHqxx3MHRKp+ZyzWSDgZJZqMclfFj3mqtvPP7SUli/ncuIWw8z7w+MAbBDsOThLO/xhBXx6eZ79DaWMVTR7DHwvy+WVREa8EA2nX8Rkvxb4CAh4/YuCmudeyeOKC7MbbRUPcXdW7+MFLP8Dv8RPwBkjYCSzH4qazb2Jx6eKM+/vDGJN29+bz+PB7/Ow4uoM7n7+zy3/XZTOW9fjvPghBsPdTPneM+zNdF8M+yh2Nl/V5ICeD3Argcdq1Q2q379+AvPbtkDoWOEkFsG+LyBZjzPuBt4nIDakC1jelukNcCPyniFyaCoCTgatFxE41VL9TRJ5J1fiM4fYBbA2AnwAuA64TkWSqrmgEOABcliqc/QDwQqqX4Fbgc8AR4DncG6d63Pqk94rIb4wxgnsj9Yts/q6yLdzXYoyZRKo7vDHmrUBjTyeIq7UZmD/10THaXg38JPXnXwGXmQGcO1y/7SB+ryE/4MN2hIDXg89j2Lizko07K/F53EBicD+37gN4+MUqntzrrqG6cfmcjMEPspv6vP/p1/EY8Hk8eIwn9dnd3n68xrif/V7D+m0HO30/Xe3PiWfvcYNUIB+McT97Au72TJ77LmDA63Ojvdfnfv3cd/t13Q17H8APhEzq38548ae2A2yo2IDf6yfkc9+MhHwh/F4/Gyo2ZDy3PySZIFr/Bieq/8rhxjc5Fj1O2GrBFofttV3XjNheu9u98/P4wBd0f436ggTtJKXb7mby779IhVXHZ6dM5pKZM/jK5Eltwc8nMDk4ninBCczMn8aE4DgK/Pn4jZeHK5/s1/fy8IGH8Xv8BH3uz3TQF8Tv8fPwgYez2p8tr8dLvj+fCXkTmJI/hbKiMk4pPoXphdMpyS9hQt4EigJF5PnyeOCVB7r9d4We/92HqdmkBz8Y3HZI/5LqvPCWbqp7PYSb8Q9wHfBQKpAtAX5p3Oa363GDeKtftpt2fAb4pjHmFmB8F1OilwPrW7eLSB1wOvC6iOxPHfMT3DvH9s4HtopIbercn7c7xgZ+3dVfRFeynQL9LLAJONUY8wzurW/GedzUO4vdwGnAd0VkR4dDyoBKgNQ7gEbcW+TjHa7zceDjADNnzsxyyCfLjtmOtFVYyfN7ONYURYDivPRvv3XfnsoGvr/VLQN12RlTeO+iGRlfqyjPTyiQ+RlLS8Km4yyqx7jbeyqT1v776W5/TjS8CXkdgr8/BA2HMp8bD0PHRAPjdbf347pVTpziDkWX84yHKsedJemxLFmGc3vLEYe4FSUaPkpL+Fi3HdedTu/92m0P17RlYQYTUca1nGC/J8mPCgv4Q2kZDd6TP1dGoECgUMBGMHgo9OWnvfEKeAJUR0/06ftpVR2pptCfnkcR8AaojlRntb+jrp7PBTwBvL14Lpmp3NyAlKMbXMO6HRLu7/x1qTuzRcBmoABo6GH2r+31ROROY8zjuK2PnkkVwu5dn67ei2V67tdej3eAxpjzjTFTU+v8LsGdc43j3nIeznRxEbFTf1EzgAuMMWdlO7AO1/mhiCwWkcUlJSVZn1c+IZ+olf53EbMcphaHmFYcImY5nfZNzA+y9rFXcATmlBTwb/8wL+NdnddjmFgQ6PGYVgUBLx0rWDnibu9qvK1l0rr7ftrvz4nxp7jTk+1ZURifxRuRYGFq2rMdsd3t/bhumSdIrMNauZg4lHncFPaywjJidvr/s9ayZJnOzcQRh4gVoS5Wx5HwEQ4df4Xq6j00NVV1G/wAPN3MkHkwUDiFYKyRRNMRfkMj7ysdx/XTp/JQcZEb/ASCDkxxYJYDpWLwCUw1fkpDk0g46eXTEk6C0tCkrL6f7pTml5Lo0FopYScozS/tcf+0/GmEfCGKg8VMCk1iWuE0ZhbPpLyonKkFU5kUmkRxoJiQL9Sr4Ac9/7tms38Y+gZujkTrf+DBbodULSL3AffjtkN6RETOSX3sSs3g7cR9jvfb1O/zJuB1Y8z7UtcxxpguSxIZY04Vkb+KyF2p65zR4ZA/ATcaY3yp4ycCrwKzjDGnpY65Hniqw3nPA5cYYyanbrI+0MUxWck0Bboet/ISuLe9X8Z9+FmP2/oiKyLSAGzBfdjZXhVQDm7WEG6Xif69dW3nxuVzsGwhkkgiSFrJsuvOLyfpuNta91m2Q1PcoiFqUZTnY+2qBRkTWsDt9JBtvc4bls7GEUg6Do44qc/u9rTxivu5tUxap++ni/05seRW99lcIuIu2k5E3K+X3Jr53LfeDIibCemkPiPu9n5cd/WZH8ICopL6txMbK7Ud3LJklm0RTbrd0KPJaFtZskzndiQixJIxGmINHGs5RmVzJTWRGprC1SQa3oSWE6nvq2fLShZ1uf264Ay22w18rhDeM20i35swnkN+9655dmAiH5nzbj5bupzxIgQcd4Y0LoJlhGvKLuWa8suxxCZuu1nNcTuOJTbXlF+ecUw9uWbuNViORTyZum4yjuVYXDP3GgCunXcttmNj2RZe48V2bESEG8++kdKCUibmTaQoUETQGxywFkk9/btms3/YcRNdbgaO4nZBPwoMSAJMFlYALxljXsSd5uzu2cNDwAdTn1v9M/BRY8xLuJ3br+7m3E8bY/5mjHkZt/XR7zvsvx84hNtC6SXgn0Qkhttw/ZfGmL/iJsf8oP1JInIU+CJuTHkJ2C0ij2b+ljvrMQnGGPOSiJyd+vN3gVoRuSP1daYkmBLASvV6CuHeNd4lIr9td8zNuPPPrUkw14jItT0NuLeVYLbuq+G7W16jsj7SqWRZaxbosaYopUV5+H0edr1ZjwHufM9bOH9W5k7WBUEfpcW9a16cTRZoV2XSstmfE23ZmofcO7QBzwLt/XVzmQVq2RZxO040lcCSVpnFtiBa17aQvTfufmUD22t34yDMiVtMNB72+D0k280wTLYdLpEQK2a/g1lzTgaxQWzp9AAAIABJREFUXfs38XDVZqrFotT4uabsUhbPW+Xuq6vg4conqY6eoDQ0iWvKL88+AQa6TIIB2F29m0dee8TNuCyYxgfnuxmXAU8AY8yQZFxmes0hzALVdU8jUKYA+DfgnNTzuX3Ax0VkW+s+Eel2StMYsxD3AaYX907zFyKy1hizFtglIptSSyV+ips2W4ebDdRjRkdfSqFl6u8H8NhLR/jWkwcA927sny7MPBXn9RhmTMjXbg0jWOtdUywZI27HSdiJtC7nJw903PJliXBaq6JsOeLwSuNBtr3xB7Y37CXc7kcmX2BZ8Wksm3UFZ02Yh3eQm8r6fAF8E2aPrPVzw4/+EhiBMv2EPwg8ZYw5DkRx29yTmp/NlAX6Mm5g67h9Tbs/x4D39XLMA67iSCPf2fwaAMvmTuYDF3R+N9yVyb2Y+lRDr/XOLm7HSTpJHHGwHCtD7U1x1/PFGvsU+Cojx9havZOnjjxDdTKVFG3AK8JFtpdLpi/jnLmryPMNTgkuYwxBT4A8b4BgoIhg3ng8wUI3AUmpMabHAJhaI9K6VuWPcvJ20QN8KteDGwx1LQnueOwVko5wysR8/v2K07Oq4lIY9FEQ1HfIw1lrsIsn48TsWI9JKl1yktBS22WPvp7UJ5rYXrObLTU7ea05Pav1rHict1PIhae/l9DMJe4SkBwxxuA3Pvwe9yPoC5EXmogJFIA/3536VGoMy/gbvP3C9Xbb9nd17Ehj2Q53bKrgRDhBQcDLV65ekNaotjtej2FSoRbNHU5sxybhuIuxY8kYsWSsT10V2iRa0ro1ZBKzE+w48TJbqp/nxbp9aU1lp1tJrmxp4R/8pYw/+yPEpp874IHPGEOgdZmB8RLwBsjzBDBe3/9v787j46rOg4//ntlntI1sLTbyBoTNjvGCrbDZ2CGkJaUQKG8waSBO8wJJSUKSN01a2uZtk5Y2aT5pyUsTliQ10ISlSUhImo00EnYwNhhjA7bZg5HlRTJIliWNRrOc949zR5oZabTYGs2M5/l+Pv6MdO+de4+uJT06557zPOCrtM9ftZenVIay7sJ8s/U1XtjfA8BfXnom82ZMbDnBjAqfDn0WSHqgiyViQ6+jPrc7JsYWp432jntkwiR5ofsVfnvoKZ48vINIWn7PqkSS9/b188e9fZxVvYCeFTcxcNJSBqYo8HlcHvxOFpaAy4fP5R0euXC5NegpNQFlGwB/+cJBfrLD1kar8Ln54TPteF2uEUVts4V8HqoCJ2YW+bwYK9/nGPuOO9C98QQ8ex/07Ifqk2DZ9bDggrH3DfbZZ31vbs2Zl3Pb27v4/hv/TXt/B4PJOPG05BYeA6v6bdBbHYlgqufSfdEtdMxeOn6Pb5xcoB6Xh4DbT9Dtx+/yjUxs7XKDvwp8FUUR9EoqJ6cqWxPKBVpMpmIW6EsHj/LJB54lnjQEvC7mhANE4yYjF+hoXCLMqQ3iceuzkwkZK48owC8+R8LlZdAbJBaLEDODxNb+LbH55x5fj+6NJ2DjV2wWGk8A4gOQjMFqZ/lF9r7EIDTfBLMW20A0Sl7Ot5b9Kd8b2EvLoaeIZ7VtYRyu6n6bP+jrJ5xMMuAJ0B2sZsDlgeYbMwLZqHJc09/8cUILLiToDuAbrUJ7anjTVwneyS3FyacC5+QslKIZEsp3OSRnJv9GY8yE8+2JyOXAQmPMP49xzDGXSjpWZRcAu/sH+dh/bqfjaBSPS5g/Y3gZQySWYGaFn69fM2piA+qq/FRr72/iNlwGRw+BL0QCwyAQH+wnVlVPHEO0t5OEL623EotARR1cedfxXfeRm6DvcGZPKHVuGN5nDCQTEOuHYBgu+TI89rd2uYPHTwTDk54kLa4Yz3kgmfYrrgLhD3v7+bOuLubFbS9wwOOnu7KOAa+T3zQeHT7vWJxruj1+gggBA4HYAJ6KOrgyK9+E22PTpvkqiiropfvorz5KZ6STYFolikg8Qn2wnu/8QUlWUJuIYwqAi+9dPKIc0vMffv64FsKPFgBzlSeaShMpP1RsymoINJE0fPm/99BxNIoAJ4UDGc/yUrlARxP0uTX4jSORTBA3ceJJ+y92ZC/xQA0xSTD0U+HzQ4+TRc+fmbcRT8AOSx6vnv1jn9tXZbO3pH5W3X7o7bRfQ28HO4IhWryDbHEniab9WhOE+cbDR7ve5oojXUO/8Z4PVlDv8jMQnGkTu6aknTcXt8tN6GgHFb5qAibtvZ4g9BxwLiz26/FXFW3QS1eCOTkLwgl+I8ohLb538c3HGwQhr+WQ7sGmRvuBiLzhnOcS4Ksi0gN8HZsT9AngFGPMZSKyHlhhjPmEUzWiB1gBzAI+75xrAeOXSvoi8MdAENgM3GSOoxdXVgHw7o2v8+yb3QDMnxEikXXfUnlCs4kIdWU+69MYYwObiZNIJkiYBPFkfOg1ta4uQ81JI3ti8QH73A3G3nc8qnNct2q27fH1ddrKC6mvLTHAa1W1tLz6QzbW+uiW4UrqXgPNMXhv3MVpvV0s7hte/ro7VM39dbPYO2MOt3W+ZXuO6TlFE1GoHJm71uPyEHIHCHkCBNx+qDrJplRLD27xAahpss8D/VV5XS4x1Zoqm0b0AIs8J2eh/AU2+KWSYfenbZ+qdGjLSSuHlOaDwK/SyyGl7zTGHHGqPVyETTl2mXN8bJRlYm8ZY5Y7iU1eAVYbY34vIg+M0a7ZwIXYwPwothpQuhuBBQwnYkk9l7rDGPMlABG532nXT8e+BbmVTQD87Ysd/NcztuexbuVcls4Jc/tvXyESS2TUA1y3cuQi+HDQi7cMnvulenCpSSepwJYKdJO27Hr7vC1G5rO4ZU7ezbH2HY/s68Yi9jnf6e8DjH3eFocOj4/H3VFaAoY291FobxkayFoUh7VxDxf39TKnr5tAWuLn50OVPNwwj23BIDGSfGzeJVAfHTpvRk2/hVcOLT4PeYIE3T682RUyln04s72JQdvO1V+AQFZPtgSsX7Se27beBpDxDLBoc3IWzsnYnl+66SyH9F2nVuuPjTE7RjkmVQ6pBVsO6Zs5rpHKE3om8Hra9R7AqeIzih8bY5LAbhFpHGX/e4A7s0olAawVkc9jA/YMbC5SDYBjefnQUb72q5cAOGdemI9eeDJul3ALpw3lAs3OE5ridbsIh0p76DNpkkPBLZFMDPXkUr22hEmQNEmm/HnwgguAL+SejTnmvim47vZ74Ui7ffa38P3QtIy+eIQnzriIloNbeMGVmhhlo96cUCNrG5pZkwww74VHCHfvywh8A40L2Xrq+dzV/zqHBt6mMRDOyrt5gzOTsxOprCf4zmsILriQkCeAW8ZIqn7yhTbwbd8APe2Tz7daZFbNWcWt3KqzQMdXiuWQJnyNcaTnppzQ8IbTw/wmdii1zalleFzPBE74ANjdP8hnHt7BQDzJrOoAf3PZwqHnfs2nzBh32cOMCt+EMsMUA2OMzeDvZEBJVeku6ESnBRfkDmpj7TseJgmzF8PFfwvJJPFkgu1du2nZ/V2eeut5BpOxoTooYW8VqxtWsLZxJadWzCF48DnCOx4g8NZwStqBxkV0L72WgVmLmS/Cbbmu27ScwLzzqPSECHkC41dBcHvt8Ka/GmaeCkuvGfv4ErJqzioNeOP7F+wzQLBBcLrLIe0zxtwjIn5sOaRPA49kHZdRDmmc074EnCIiC4wxbzBcTPdYpEoltaQNgaaesRx2CvNezcih00k5oQOgMYbPPLSDfV0RfB4Xf3/5QmqCE+/NBX3uokt3lnoWF0vGMiecOEOWpTard0qZJESPwsARTDLJy0ftsoWNHc9wND78R6rP5eXcurNZ29DMshln4sZF4MAOwpvuINDx4tBxQ4Fv9tljXtYtLiq9FVR6QnjHSyDtctlJOCUyoUXlz/Mffv6Xi+9dfDNTPAt0gtYAfyEiMaAXyPXs4SHgv5zjx2SMiYjInwO/FJE+7DDrsfo2cDq2VFIMOwnmDhG5B3gBOHic5wfKYBnEr3cd5LMP7+ST734Hlywcbah5dCJCUziIL7t8+zSJJqJDk01SwS21GFxlM0OB72BfBy2Hnqa14yn2R4ZnYArCkvDprGlcyXl1Swl5AmAMgf07bI+vMz3wvZPupevGDXwBt59qbwVBd2DsUQKXy1mv5+TgLJERBTUp+p8KiEilMaZX7A/EvwOvGGP+tdDtyqW4ujd58N5Fs/jpJ6owTC7Q1wS9BQt+AB19HVOY3usEZZIw2MvR3oP87uBTtBx6mj09mdW0FlQ0sbZxJRc1rGCmP+y8zxBof3ZE4IvMWsyRJesYmL14zMsGPQHC3ir8bl/ug4Z6epqOTJWVG0Tkw4APeBZbVL1onfABEOxzvPHqAabzul2EJzFUqnLbdmgbP3rlRxzqP0RjqJGrTruKFY0r7M6n7oEd37PV4H0hWPqn0HzD+O81SWKRLp7e/wQtB7ay7e1dGdlZZvhqWNOwkjWNKzk5feq9MQT2P0t48x0E+g4PbY5UNtJ94S1EZ9nylqMVmH1X3dlUeULs6HqJ+3//KO39HTSFGlh/yvtZ1WCrvX/r5Ye4//c/pT8xQMgb4rqzruPjSz8+fP2x0sIdj3ydN4/ylSpNU7AVltPbK9oeX7YTfggUJlYQN93smiBB3xiz9qZBW09byfcAtx3axp0778TrJG1OTcr52JKPsWLvs3bZAALidhalG1h5AzTfMOp7BxOD/NG8i9l/tI3fdTxDX3w4aUHA5eP8+qWsbWxmcTirqKwxBNu3U7PzQQKdLw1tjoiLbpebqMsFi/8XnP0Btr29iztfedhWVHD5GEzGSJLkrxfdiIhw26578IrNyzmQiBIzcW5954280PMGd730fQTBLW4SJDDGcNPZN9kgOFZauOMJVvk6bx7lK1VagVOw6RBoCdIAmKUq4KW+qvCL3k+EAHjr726la6ALf9qi82g8Sm2gltt2b7a/rN1pgxCJuP0lfmNrxnsH44P0Dh6lJ3Y04564EJbWnsXaxpWcW3e2XVSezgl84R0P4D88XMErIkK310c0lVA6kQCvHz7wn9y683a6okcIuAO4XS5cuBhIRKkP1ALQOdBF0DM8eSWSjFEfamRP14tE4hE8Mvz1xE2coCfI5ms3Z6SFGzLYD1WNsP5nx36T83XePMpXqrQCp2DTAFiCymIIdKI8LhczK8Z4rqMm5VD/ISq9mTl5fW4fh/oP2V/S2TMmxW23Awf6DmCMobO/g2gysyDtOyrnsqaxmdUN51DrG2WheK7AN/tsujt2E3V7M1OWiQsGBwDoiLxNja8St7iHJrYE3H7a+zsAqPZW2uPFDS4XAeOjvW8//bH+jOAH4MZNf8xZ4tW9F5wgOsQbhO7MgrmTlq/z5lG+UqVpCjY1WRoA09RV+XBpnb8p0xhqHNEDHEwM0hhqBN9rtgeY9i0YNQmeqqrmt5v/L4cjhzPO5RE3QbefWcE6vr7886NfMGfgW0L30nVEGxfBwx+CWBRIG+I2SbzeADX+WuZXzqZzoAuPZ7hdA4koTaFZ4HLTGe0i6A6k7bMpvnoGe2wPMO3rSZAg5HV6ZuH5I3tqsYhd9H488nXePMpXqjRNwaYm68TP7zVBlX7PhKrBq4m76rSr7ML8eBRjDNF4lFgyxlWnXWUnvGBIJuI853Fze1WQ62bX8dWaINs6tgN26ULIHWB2oI5G/wxCniAfXPBHIy9kDMF925j9339B42/+fij4RWYv4cCl/8ShP/iyDX4AZ15uXxMJSBq8iQR1iQRNi6+l0hti/SnvJ2biROIDGGOIJAaJYVi/9GOsP/sGYsk4kXjE7otHhlJ8XXfWdXaNpolnvF531nX2euffYp/NDfbbKhSD/fbz8285vpucr/Pm0fpF64klYqPex2I8rzpx6TNA7Jq/uUVW5+9EeAYIuWdy7u3ZS8tT/8bjR17mcNp9d4uLc2YsZG1jM25x89P21ozZmMNpx3B6fM84Pb5XhjbbHt+1RBsXjt6o5x7Gu+dRwgN9VHiDzuzT4ZSFm95+gQ2vPUJ730GaquZkzCQca5bht3Z8i/v33E9/rH+cWaBvTm26s3ydN49OwFmgOnRUgjQAArUhH7VF9uzvRAmA6d4eeJuN+zbS0vZbXj+Sme7wjKoFrG1cyYUN51DjHbWW5zCnxxfe+eDkAh82C0yNr4oKT9baPBGbnSU4I3NijlITowGwBJX9T7rH5ZpUejQ1OZF4hC0HttDa1sqOjh0kGS6ZNCtQx5rGlaxtWMlJoYbxT5YKfDsewP/Wq8PXOGkp3UvWjRv4wr5qmwEmnTdoF6v7KsFV2KUvSqnpVfYBMFzh1YkvUyyRTLCzcyctbS08eeBJoonh3nelJ8Sq+uWsbWzmzOqTJ5ZoPGfgW2YntzSclfOtXpeXcHaPz+OHQI1NTaZBT6myVdYB0Ot2aZX3KWKM4fdHfk9LWwuP73ucrmjX0D6PeFg5cxFrG5tZMWPR+Amjh09KcN/ThHc8ODWBzxuEYNgGPqVU2SvrADizsrie+5Wiw5HDtLa10tLWwptHM9eeLao5lTUNK7mwfjmV3lCOM4xiKPA9gP+t14Y2TyTwjXjGl3q2FwiDR/+/lVLDyjYAVpTbsoc3npiy4rP9sX42799MS1sLzx9+PiPReFOwcSj59KxgHbRvh9Z/gt4OqGyAhVdC0/LRT5wj8D0RCPAfNVWcWl3BtTmCX9AToNpbSTCVDebNrbDjfjiyD2oXTNnMyLFmGWoeSqVKS1nOAnWJMKfIlj1km9JZoG88ARu/Ai6vrTweH4BkDFZ/YcJBMJ6Ms71jO61trWw9sJXBtOwsNd5KVjWcw9qGZk6rmjf8XK99u8336fKA2w+JKCTjNt9nehA0hmDbU3ZWZ1bguzNcxS6/nyRgRFgXmM+15w4vhA95goS9VfjczlC2yw0HnoPffHHK82OOlWsSKGQeSlV4OpGgBJVRF2jYjEpfUQe/KffsfTb4pcryeIMQc7aPEQCNMbzS/QotbS1s2reJI4NHhvb5XF7eNXMxaxubWVZ7Fp7RJpPsfsQGv1QmGI8f4s72puU5A19/03I+GW/jmYAfN/Y3ixtIGMNP+t/gWkYJfG4PBGttdfVHP2mDXyo7ii8Eg9i1cscRADfs2oDX7R3KNJJ63bBrA0DOfRoAlSpOZRcAA153+U186dlvA0M6T8BuH8XBvoM8vu9xWtpaMvIoCsLi8GmsbVzJ+XVLCWWvpcvW22Fr4qVz++FoB6G9W6jZ+SD+t4fr9/U3Lad76bUM1p/BttabcWeNTriAiEuYHawfrsWXHvhSPc885cccL9ek5qFUqrSUVQAUkaKo9DDtqk+CvsOZhVnjA3a7o3ewl03tm2jd18rut3ZnvH1+xWzWNDRzUcOKoaoIE1LZAJHu4R6gMYQi3dREj+JvuW3osP45K+hecg2D9WcMbQsmDQMynLFTgARQkTQ2+LlcdtF6oGZkhfU85cccL9ek5qFUqrSUVQCsDXnxltPQZ8qy6+0zwBgZzwBjSz7Itv1P0tLWwtOHniaejA+9pdZXzUUNK1jb2MzJFU0TW6+XbeGV9hlgzBBKxKjpO4w/ERvabQPfOgbrTx/x1itCC3hwYC8JY+zwJ4AI11WeAZX1mT2+bOffYmvkDZL5DPA482OuX7Se27bawJ3+nC+Va3KsfUqp4lM2k2CORmM0hYPH9ou8AKY8FZozC9T07OfF6jpa6uayqedlemN9Q4cEXD7Oq1/KmoaVLKk9I7Oo7LEwSUI7HiC8+yf4YgNDm8cKfClucfHDLf/CQ32vEXEJoaThuppFfPyqh3IHvnR5yo+ps0BVDqXxi0VlKI8AGInh97gIeEsn68dUB8D9vftpefM3tLY9zsFIx9B2F8KS2jNY29jMeXVLRhaVPRYmSejNrYR3PIivazjnZ/+cFfYZX91pOd8qIlR7K6nxVuISl53VGZoxdo9PqcLTb84SVBZDoJV+D+4yTHd2JHqE37W10NLWyktHXsvYd0rlHNY2rGR1wwpm+Gum5oImSejNLU7ge2Noc/+clXQvXTdu4KvwhAh7q+yMUpfLLl4P1mrgU0rlRVkEwHIKftHEAE/te4LWfa08c/g5EmY4+XSdv5Y1DStY09jM/IrZU3dRkyS0dwvhnQ/g69o7tHkigQ+gwhMk7Ku2KdJEhgOfqwyf1yqlpk1ZBMATXTIZZ9eh7bS0tfLEoafpTww/bwu6A1xQv5S1Dc28M/wOO6w4VUyS0N4nCe98MDPwzW22z/jq3jHm2wNuP7W+6uElDf4qCM3UckRKqWmhv2lKkoF4lLau12jZ9zitB7fQmZZ82i0ultWexbsbm2meuXg4wEzZ5Z3At+NBfN1pgc/jp7t2HoNnvg/GCH5+t48abxWhfc/As/fC0QMQXgAXfjZzosrQRJa9dmnDNExkUaVN/2/VZJTFJJhSNGISjElCrJ+u3kNsbN9Ey6GneK23LeM9p1XNZ23jSlbXn0NN9gL0qWCShPZuJrzjoazAF6A7FGbQX5073Rk2e0ytv8bm60ylZ3MHbD2+7HRlLz9mlzJMYzoz/UVZ2gr8f1s+z1lOINoDLGbJOMT6GRjoYsuBp2k59DQ7uvaQTEs+3RCYydqGlaxpXMmcUGN+2pEr8M1tpnugi8HEYO50Z9geadhXTZXXKUMkAju/B54Q+J1t2enKNt8+7enMNACWNv2/VZOlAbBIJXraebZjB60dT/Pk4Z1E0orKVniCrKpfzprGZhZWn5K/tY1Dge9BfGlpxPrnNtvlDDNPhUduGj3dWW/nyCUNYHt7oZl22HOsdGUFSmemSpf+36rJ0gBYZDr7O7l317389NUf83Za8mmPuFk5851OUdmFeF15zGeaTNjAt/OhrMD3Ljurc+apw8dmpzsDSESprGykJtgwXPzWG4CK+uHjxktXVqB0Zqp06f+tmiwNgEUmYRLct/u+oRp7Z1WfwtpGW1R2aAgxX4YC34P4uoefL/bNO5cjS67JDHwpqXRnccDtJxCPMiMRx7fsI7YShIgNfIGsZNzjpSsrUDozVbr0/1ZNlk6CKUJ/t/nvCMYHuaj+HFtUNt+OJfCla9+Oe/ePmXG0g4qq2bDsw7bMki8EFQ25lzWMl66sAOnMVGkr4P+tToIpQRoAi1Rb2xMkEvHxDzweyQQVbzxBzc6H8B3JDnzrGJx5yrinSD3nC3urhp9FutxQUWfX9SlVHjQAliAdAi1HuQLf/PM4cvY1Ewp8YIvS1qYyuKQEauwkF83iopQqchoAy0kyQcUbv6Nm58MjAl/3knXEZpw8odN4XV5mpNbzDW3MmuSilFJFTgNgORgKfA/hO7JvaHPf/PPpXnLNhAOfS1zU+Kqo9lSkDXe6IFQ3cpKLUkoVOQ2AJ7IpCnwiQqUnRNhXhVvSSkrpcKdSqoTlLQCKyFzgPqARMMDdxpjbs45ZA/wESBWN+5Ex5kv5alMpSM1i29v1Kg3BmVw19z2smLFoYm9u324zsBw9RIXbR81gP76+w0O7++afT/fSdcRqF0zodG5xUemtoMpTYUsUpXj8dv1farhzrJydY+wrxdmYm7Z+gw177qM9GaXJ5Wf9Wdez6l2fyv91S/BeKVXs8jYLVERmA7ONMdtFpAp4Bni/MWZ32jFrgM8ZYy6b6HlP5Fmg6bkMXYk40USUmEnwsdM+MH4QbN8OT91NRTxKeKAHbyI2tKtvwQW2xzfBwCciVHkqqPFVZvb4XC7b4wuk1Q8cK2cn5Ny3KRQouZycm7Z+g9t23YMXCIiLAZMkBty66Ia8BkHNX1oSdBZoCcrb2JUx5oAxZrvz8VFgD6ApGcaQnstQEPxuP15x86O234z9xmSCim3fpeloB/V9b+FNxDBAny9Ee8PpdK75woSDX4UnyEnBBmb4a7KGO6ttDy6QVTw3PWeniH11+ez2MfZlfK0iBD1BvG4vG3ZtmMwtm1Yb9tyHFwiKG0EIihuvsz2v1y3Be6VUKZiWZ4AisgBYBmwdZfd5IrIT2I/tDe4a5f03AjcCzJt3fKmwitlouQx9Lh+HIm+N/oZkgorfbyS882G8PTbfoQH6/ZV0V8wk5vZDtHdC1/Y5MzsD7qxZnB6fXczuDYz+xjFzdpqc+9qr4iWXt7E9GaU6q55iQFy0J6M53jFF19Ucl0rlRd4DoIhUAj8EPm2M6cnavR2Yb4zpFZH3AT8GRpQPN8bcDdwNdgg0z00umNFyGQ4mB2kMzsw8MFfg84Xorqwnlno2F49CZf2Y1xxRqSFFxA53BsNjN3q8nJ059jVVNpZc3sYml5/OZJRgWs94wCRpcuV36YfmuFQqP/I6fU9EvNjg9z1jzI+y9xtjeowxvc7HPwe8IjINub+K0/pF64klYkTiEQxm6BngVXPfYw9IJqh49bc0/fhm6jf9K96edgxC34JV7D/vz+kM1RIDGw3jTl2+hVfmvF6lJ8RJoYaRwc9fBbULxg9+YCe1JAdhsB+Msa+pnJ1j7Mv4Wo0hEo8Ufd7G9WddTwyImAQGQ8QkiDnb83rdErxXSpWCfE6CEeBe4G1jzKdzHDMLOGSMMSLSDPwA2yPM2agTeRIM5JgFGj6TitcfJ7zzIbxHDwDYwHfyhRxZcg2xVG8rNQu0t9P2/BZeOaIoLYwx3On22MXsvkkm3R4rZ+cY+0pxZqPOAlU56CSYEpTPAHghsAl4Hkg6m28F5gEYY+4UkU8AH8fWEogAnzXGbB7rvCd6AExpa3uCRCxKxeutdqhzrMA3QW6Xm7C3avThzkAYQjPsx0qpydIfnBKUt2eAxpjfMc43hTHmDuCOfLWhZCXihF75DdXPPpAV+FY5gW/upE7nEhc13kqqvZUji+d6g04KM99UtV4ppUqCZoIpNgdfgIc+xMwumxvgeAJfzgwuYIc7Q3W2QrtSSpUhDYDFJjwPBrpt4DtlNUfO/sCkAx9AwO1npr9mZOV4EQjW2n863KmUKmMaAItNoBqu+CYHYz09FFEJAAAOJElEQVREq2ZP+u0el4cZvmpCaVPmh4xXoFYppcqI/iYsNi8/Blu+SbzrVZtvM8dMzmwiQo23kpr0wrQpLrd9zpev4c7Wr8CWf7eL7v2VcO7NsOYL+bmWUkpNEQ2AxSQ9r6avCiLd8PQ9wA1jBsFRC9OCM7uzBoIz8lexofUrsPGrgIDLa9f6bfyq3adBUClVxLSOTTHJzp3p8YPLY9f2jcLn8tIYrKMhMGNk8PMGoGYOVNTlt1zRln8HxA6rupxXxNmulFLFS3uAxWS0vJpuv13Ynr4pV/oyGL1iQz5Fe23PL524J5yDVCmlCkUDYDEZLa9mYjifp4hQ7a2kxluJS0bp1XmDUDXLPvObLv5KO+yZ/q1kErq8QilV9HQItJhk585My+cZcsoU1fqqRwY/EZvFpaZpeoMf2AkvGEjEIem8YpztSilVvLQHWExOvwT4mn0W2PUaVNbjW3Q1tadeTDA7b2eK22t7fZ78ViTIKTXRRWeBKqVKTN5ygeZLueQCbd/3JFXuENWjPedLCdTYSS66oF2pQtMfwhKkPcAiNTtYjyvX3yYuF1Q2Tr5qg1JKqSEaAIuUS1xgkiN3eIM2+Gk2F6WUOi76W7RUpCa6BGvHP1YppdS4NADm0PpiB3dtfJ22rn7m1oa4afUprDmzoTCN8QZsDk+PL63A7F67bCK9+GyhFGOb8qWcvlalTnC6DGIUrS928MVHd9FxdIBw0EvH0QG++OguWl/smN6GiNg1gDVzhoPfLz5n1woGau3rLz5ntxdKMbYpX8rpa1WqDGgAHMVdG1/H6xZCPg8i9tXrFu7a+Pr0NcJXBbULMjO6ZKdK84Xs55tvn752ZSvGNuVLOX2tSpUBDYCjaOvqJ+jNXFAe9LrZ19U/fY2orB+5qL17r50Ek84bhO43p69d2YqxTflSTl+rUmVAA+Ao5taGiMQSGdsisQRzakM53jFNwvMhFsncFovYIrqFUoxtypdy+lqVKgMaAEdx0+pTiCUM/YNxjLGvsYThptWnFLZh2anSBvvt5+ffom2aDuX0tSpVBjQAjmLNmQ186fJFNFQFOBKJ0VAV4EuXLyrcLNCU0y+BS78GVY0w0G1fL/1aYWchFmOb8qWcvlalyoCmQlNKqeOnqdBKkPYAlVJKlSUNgEoppcqSBkCllFJlSQOgUkqpsqS5QNUJadPWb7Bhz320J6M0ufysP+t6Vr3rUxN7s+b7VKosaA9QnXA2bf0Gt+26h85klGpx0ZmMctuue9i09Rvjv1nzfSpVNjQAqhPOhj334QWC4kYQguLG62wfl+b7VKpsaABUJ5z2ZJSAZH5rB8RFezI6/ps136dSZUMDoDrhNLn8DJhkxrYBk6TJ5R//zZrvU6myoQFQnXDWn3U9MSBiEhgMEZMg5mwfl+b7VKpsaABUJ5xV7/oUty66gXqXnx6TpN7l59ZFN0xsFqjm+1SqbGguUKWUOn6aC7QEaQ9QKaVUWdIAqJRSqixpAFRKKVWWNAAqpZQqSxoAlVJKlSUNgEoppcqSBkCllFJlSQOgUkqpsqQBUCmlVFnSAKiUUqosaQBUSilVljQAKqWUKksaAJVSSpUlDYBKKaXKkgZApZRSZSlvAVBE5opIi4jsFpFdIjKipLZY3xCRV0XkORFZnq/2nDBefgw2XAb/tti+vvxYoVuklFIlKZ89wDjwf4wxC4FzgZtFZGHWMZcCpzn/bgS+lcf2lL6XH4NffA6OHoJArX39xec0CCql1DHIWwA0xhwwxmx3Pj4K7AGasg67ArjPWFuAsIjMzlebSt7m28HlA18IROyry2e3K6WUmpRpeQYoIguAZcDWrF1NQFva5/sYGSQRkRtFZJuIbOvs7MxXM4tf917wBjO3eYPQ/WZh2qOUUiUs7wFQRCqBHwKfNsb0HMs5jDF3G2NWGGNW1NfXT20DS0l4PsQimdtiEQjPK0x7lFKqhOU1AIqIFxv8vmeM+dEoh7QDc9M+n+NsU6M5/xZIDsJgPxhjX5ODdrtSSqlJyecsUAG+A+wxxnw9x2GPAtc7s0HPBY4YYw7kq00l7/RL4NKvQVUjDHTb10u/ZrcrpZSaFE8ez30BcB3wvIjscLbdCswDMMbcCfwceB/wKtAPfCSP7TkxnH6JBjyllJoCeQuAxpjfATLOMQa4OV9tUEoppXLRTDBKKaXKkgZApZRSZUkDoFJKqbKkAVAppVRZ0gColFKqLGkAVEopVZY0ACqllCpLGgCVUkqVJbFr0UuHiHQCe6fxknXA4Wm83kQVY7u0TROjbZqYUmrTYWPMH053Y9TxKbkAON1EZJsxZkWh25GtGNulbZoYbdPEaJtUvukQqFJKqbKkAVAppVRZ0gA4vrsL3YAcirFd2qaJ0TZNjLZJ5ZU+A1RKKVWWtAeolFKqLGkAVEopVZY0AKYREbeIPCsiPxtl33oR6RSRHc6//z0N7XlDRJ53rrdtlP0iIt8QkVdF5DkRWV4EbVojIkfS7tMX890m57phEfmBiLwoIntE5Lys/YW4V+O1aVrvlYickXatHSLSIyKfzjpmWu/TBNs07d9TIvIZEdklIi+IyAMiEsja7xeRh5z7tFVEFuS7TWrq5a0ifIm6BdgDVOfY/5Ax5hPT2B6AtcaYXIuBLwVOc/69C/iW81rINgFsMsZcNg3tSHc78EtjzNUi4gNCWfsLca/GaxNM470yxrwELAX7xx7QDjySddi03qcJtgmm8T6JSBPwKWChMSYiIg8D64ANaYd9FOgyxrxDRNYBXwGumY72qamjPUCHiMwB/gj4dqHbMglXAPcZawsQFpHZhW7UdBORGmA18B0AY8ygMaY767BpvVcTbFMhXQy8ZozJzqpUyO+pXG0qBA8QFBEP9g+X/Vn7rwDudT7+AXCxiMg0tk9NAQ2Aw/4N+DyQHOOYP3GGhX4gInOnoU0G+LWIPCMiN46yvwloS/t8n7OtkG0COE9EdorIL0RkUZ7bA3Ay0An8hzOE/W0Rqcg6Zrrv1UTaBNN/r1LWAQ+Msr0Q31MpudoE03ifjDHtwNeAN4EDwBFjzK+zDhu6T8aYOHAEmJnPdqmppwEQEJHLgA5jzDNjHPZTYIEx5mzgMYb/+sunC40xy7HDUjeLyOppuOZ4xmvTdmC+MWYJ8P+AH09DmzzAcuBbxphlQB/wl9Nw3bFMpE2FuFc4w7GXA/81HdebiHHaNK33SURqsT28k4GTgAoR+VA+r6kKQwOgdQFwuYi8ATwIvFtE/jP9AGPMW8aYqPPpt4Fz8t0o5y9RjDEd2OcizVmHtAPpPdE5zraCtckY02OM6XU+/jngFZG6fLYJ20vZZ4zZ6nz+A2zwSTfd92rcNhXoXoH942W7MebQKPum/XtqvDYV4D69B/i9MabTGBMDfgScn3XM0H1yhklrgLfy2CaVBxoAAWPMXxlj5hhjFmCHYX5rjMn4iy/rOcjl2MkyeSMiFSJSlfoYeC/wQtZhjwLXOzP3zsUO1RwoZJtEZFbqWYiINGO/x/L6i8EYcxBoE5EznE0XA7uzDpvWezWRNhXiXjmuJfdQ47Tep4m0qQD36U3gXBEJOde9mJE/748CH3Y+vhr7O0OzipQYnQU6BhH5ErDNGPMo8CkRuRyIA28D6/N8+UbgEefn3gN83xjzSxH5GIAx5k7g58D7gFeBfuAjRdCmq4GPi0gciADrpukXwyeB7zlDaa8DHynwvZpIm6b9Xjl/uFwC3JS2raD3aQJtmtb7ZIzZKiI/wA69xoFngbuzfh98B7hfRF7F/j5Yl6/2qPzRVGhKKaXKkg6BKqWUKksaAJVSSpUlDYBKKaXKkgZApZRSZUkDoFJKqbKkAVAVBRH5ayf7/nNOxv8pS8AstprAz5yP14vIHVN17lGutUBEPpj2eV6vp5Q6droOUBWc2DJBlwHLjTFRJ8uHr8DNOlYLgA8C3y9wO5RS49AeoCoGs4HDqVRzxpjDxpj9InKOiDzuJN7+VSobj4i0isjtTk/xBSc7CCLSLCJPOsmnN6dlYRmXiHxIRJ5yznmX2NI8iEiviPyjk4h5i4g0OttPdT5/XkT+QUR6nVP9M7DKOc9nnG0nicgvReQVEfnq1NwypdTx0gCoisGvgbki8rKIfFNELhIRLzbx8dXGmHOA7wL/mPaekDFmKfDnzj6AF4FVTvLpLwK3TeTiInIWtpbbBc45E8CfOrsrgC1OIuaNwA3O9tuB240xi7F5P1P+Elu7bqkx5l+dbUud8y8GrpHpqSSilBqHDoGqgjPG9IrIOcAqYC3wEPAPwDuBx5zUa25saZqUB5z3bhSRahEJA1XAvSJyGrZsk3eCTbgYm9z8aedaQaDD2TcI/Mz5+Blsyi6A84D3Ox9/H1s+J5f/McYcARCR3cB8MksOKaUKQAOgKgrGmATQCrSKyPPAzcAuY8x5ud4yyudfBlqMMVeKyALnfBMhwL3GmL8aZV8sLe9kgmP7mYmmfXys51BKTTEdAlUFJyJnOL22lKXY7Pv1zgQZRMQrmYVQr3G2X4itWHAEW5ImVbpn/SSa8D/A1SLS4JxzhojMH+c9W4A/cT5OT4R8FNsTVUoVOQ2AqhhUYocud4vIc8BC7DO8q4GviMhOYAeZNdkGRORZ4E7go862rwL/5Gwfq5e1XkT2pf4BPcDfYCvdP4cteDx7jPcDfBr4rHP8O7AVwQGeAxLOpJnP5Hy3UqrgtBqEKjki0gp8zhizrYBtCAERY4wRkXXAtcaYKwrVHqXU5OmzCKWOzTnAHU7B1G7gzwrcHqXUJGkPUCmlVFnSZ4BKKaXKkgZApZRSZUkDoFJKqbKkAVAppVRZ0gColFKqLP1/R/EdUgsshTkAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "markdown", "source": [ "## Hypothesis Testing" ], "metadata": { "id": "jNz1ZH_FPiar" } }, { "cell_type": "code", "source": [ "from scipy import stats\n", "\n", "x = [x for x in np.arange(-4,4,.1)]\n", "x_trunk = [i for i in x if i<2]\n", "\n", "plt.plot(x, stats.norm.pdf(x, 0, 1))\n", "plt.fill_between(x_trunk, 0, stats.norm.pdf(x_trunk,0,1))\n", "plt.annotate(r'$p$ value', xy = [2.5,.01],\n", " xytext = [3,.15],\n", " arrowprops = dict(facecolor = 'black', width = 3, headwidth = 12, headlength = 6))\n", "plt.show()\n" ], "metadata": { "id": "JRVSC8sf9shx", "outputId": "7352ff27-ae74-4e4d-950f-c26ad89fdbd6", "colab": { "base_uri": "https://localhost:8080/", "height": 265 } }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3yU5Z338c9vEggnKSjUAweBNrWiRVwj0Lq1tirG1Yq1VWBr127ty7pP3bbbPru1j/t4ars9SA+ri7U8La31FCGgRkAOoqBiEBIgkHBMQiAnSEhCzpnJzPyeP2YSJiGQIZnknsPv/Xrlxdz33PfMLwrfuea6rvu+RFUxxhgTv1xOF2CMMWZgWdAbY0ycs6A3xpg4Z0FvjDFxzoLeGGPiXLLTBXQ3btw4nTJlitNlGGNMTMnNzT2hquN7ei7qgn7KlCnk5OQ4XYYxxsQUETlypues68YYY+KcBb0xxsQ5C3pjjIlzFvTGGBPnLOiNMSbOhRX0IpIuIgdEpFBEHj7LcV8VERWRtJB9Pwmed0BEbolE0cYYY8LX6/RKEUkCFgM3A2XAdhHJUtW93Y47D/g+8FHIvunAAuAK4BLgbRH5lKr6IvcrGGOMOZtwWvSzgEJVLVZVD5ABzOvhuJ8CvwLaQvbNAzJU1a2qh4HC4OsZE3O8Pj95pSf50/vFvLGrnKrGtt5PMiYKhHPB1ASgNGS7DJgdeoCI/B0wSVVXi8i/dzt3a7dzJ3R/AxF5AHgAYPLkyeFVbswgUFWy8irIyqsgu6iGFk/XL6PTxo3k71PH8cD105g4doRDVRpzdv2+MlZEXMBvgW/29TVUdQmwBCAtLc1WQjFRocXj5T9fy2flznJcAv4e/mYWn2impKaZ13aU8/sFM7nx8gsHv1BjehFO1005MClke2JwX4fzgCuBTSJSAswBsoIDsr2da0xUKqxq5PZnPmDlzsBf155CvoNfodnj5f7nc/jlW/vx+vyDVKUx4Qkn6LcDqSIyVUSGEhhczep4UlXrVXWcqk5R1SkEumruUNWc4HELRCRFRKYCqcC2iP8WxkTQuoJj3P7MB5ScaA77nI4Pguc2F7FgyVbqW9sHqDpjzl2vQa+qXuAhYB2wD1imqgUi8qSI3NHLuQXAMmAvsBb4rs24MdFsd9lJHnp5B+52/1lb8WeTe6SO772yE19fX8CYCJNoWxw8LS1N7e6VxgnVjW5ue/p9TjS5+xzyof7XDZ/gP9I/3f8XMiYMIpKrqmk9PWdXxhoDeLx+Hnwxl+oIhTzAs5uKWLW7IjIvZkw/WNAbAzy5qoDcI3VE8guuAD9alse+yobIvagxfWBBbxLeitwyXtx6NOKvq0C7z8/9z+fQ5PZG/PWNCZcFvUloJ1s8PLGqABmg1/crVJxs5Zl3Dg3QOxjTOwt6k9B+u+EgDa1eBnpKwp/eP0xhVdMAv4sxPbOgNwmroKKeF7aecZnNiFJVHs8qINpmuZnEYEFvEpKq8n9fzx+wLpvu/AofFJ5g/d7jg/SOxpxiQW8S0uu7ytlx9GTEplKGwyXweFYBbe12zaAZXBb0JuE0trXzs1X7kMFqzgf5FSrr2/jDpqLBfWOT8CzoTcL50/uHqWn2RHTO/Ln4w+YiTjS5nXlzk5As6E1CaXJ7WbrlsKM1eLx+/vyBszWYxGJBbxLKS1uP0Njm/MVLz39YQn2L3eHSDA4LepMw2tp9/PG94kGbaXM2LR4fz2eXOF2GSRAW9CZhLMsppbbZM+AXR4XrT+8X02y3RjCDwILeJIR2n59n3y2KitZ8h4Y2L69si/w9dozpLqygF5F0ETkgIoUi8nAPzz8oIntEZJeIfCAi04P7p4hIa3D/LhF5LtK/gDHheG1nOcca2qKmNQ+Bu1s+t7nI5tWbAddr0ItIErAYuBWYDizsCPIQL6vqZ1R1JvBrAouFdyhS1ZnBnwcjVbgx4fL5lcXvFuKKpuY8gbtbnmjykJlb5nQpJs6F06KfBRSqarGqeoAMYF7oAaoaesPtkRBVDSeT4N7ed5wjNS2DehVsuEQCrXp/NBZn4kY4QT8BKA3ZLgvu60JEvisiRQRa9N8LeWqqiOwUkc0i8vme3kBEHhCRHBHJqa6uPofyjend37JLoq4130EVyupaeb/whNOlmDgWscFYVV2sqp8Afgz8Z3B3JTBZVa8Gfgi8LCKjezh3iaqmqWra+PHjI1WSMRw+0cyWwpqobM13cAm8mD04d9E0iSmcoC8HJoVsTwzuO5MM4E4AVXWrak3wcS5QBHyqb6Uac+5e2nokqmba9MSv8Pb+45SfbHW6FBOnwgn67UCqiEwVkaHAAiAr9AARSQ3ZvA04FNw/PjiYi4hMA1KB4kgUbkxvWj0+Xt1eGhMDRqrwykc21dIMjF6DXlW9wEPAOmAfsExVC0TkSRG5I3jYQyJSICK7CHTR3Bfcfz2wO7g/E3hQVWsj/lsY04M3d1fQGEMXJL287Sger9/pMkwcSg7nIFVdA6zptu/RkMffP8N5K4AV/SnQmL56IfsILiGq++dD1TZ7WFdwjC9fdYnTpZg4Y1fGmriUV3qSPeX1MRPyEBiUfcEGZc0AsKA3cenFrUeidkrlmfgVtpXUcvB4o9OlmDhjQW/iTn1rO2/sqoip1nwHITBTyJhIsqA3cWfV7go8vtgc1FQC9+Vxe+3+NyZyLOhN3FmeUxZz3TahGtq8vLu/yukyTByxoDdxpbi6iV2lJ2Oy26aDS7AbnZmIsqA3ceW1nWe7aDs2+BXe3V9NjS0gbiLEgt7EDb9fWZ4THy1hnypv7KpwugwTJyzoTdzYeriGYw1tTpcRESKwPLe09wONCYMFvYkbK3LLY3oQNpQq7KtsZP+xht4PNqYXFvQmLjS7vazeE5tz589EgBU2KGsiwILexIW1+cdoa4/NufNnosCKHeV4Y/SaABM9LOhNXMjMje2582dS2+zh/UO2+pTpHwt6E/OO1bextTi6V5HqK5fA67tif8qocZYFvYl5q/dUxsTiIn3hV1hXcIxWj90SwfSdBb2JeVm74me2TU/a2v28Y7dEMP0QVtCLSLqIHBCRQhF5uIfnHxSRPSKyS0Q+EJHpIc/9JHjeARG5JZLFG1Na20JeWWzdd/5cuQTezLPuG9N3vQZ9cM3XxcCtwHRgYWiQB72sqp9R1ZnAr4HfBs+dTmCN2SuAdODZjjVkjYmErLz4v3rUr7BxfxWNbe1Ol2JiVDgt+llAoaoWq6oHyADmhR6gqqFXdYyEzi7TeUCGqrpV9TBQGHw9YyLijV3lxHGvTad2n7Jh73GnyzAxKpygnwCEXotdFtzXhYh8V0SKCLTov3eO5z4gIjkiklNdXR1u7SbBHTreyMHjTXE7EBvKJdi9b0yfRWwwVlUXq+ongB8D/3mO5y5R1TRVTRs/fnykSjJx7s0E6Lbp4Ff44NAJaps9TpdiYlA4QV8OTArZnhjcdyYZwJ19PNeYsKgqr++qSIhumw4+VdbmH3O6DBODwgn67UCqiEwVkaEEBlezQg8QkdSQzduAQ8HHWcACEUkRkalAKrCt/2WbRFdQ0cDR2paE6Lbp4BLIstk3pg+SeztAVb0i8hCwDkgClqpqgYg8CeSoahbwkIjcBLQDdcB9wXMLRGQZsBfwAt9VVbvyw/Tbm3mB1nwiBb1f4aPiWqoa2vj46GFOl2NiSK9BD6Cqa4A13fY9GvL4+2c59+fAz/taoDHdaXBRjkQK+Q5K4Ergf75uqtOlmBhiV8aamLO7rD5uFhg5Vy6B1bsrnS7DxBgLehNz1uypTKhB2FB+hdwjdVQl6Aed6RsLehNTVJVVu+P3JmbhUAI3OjMmXBb0JqYUVDRQfrLV6TIc5RJYZd035hxY0JuYsmaPBZxfYVtJLdWNbqdLMTHCgt7EDFXlzd2JczXs2ajC+r3WfWPCY0FvYsa+ykZKaxO726aDzb4x58KC3sSMt/It2Dr4FbYW11DTZN03pncW9CYmqGrn1bAmwK/YrYtNWCzoTUw4eLyJkprEurdNb1wSuErWmN5Y0JuYYLNtTudX2FJ4gjq7dbHphQW9iQmrE/hq2LPxK7y9z7pvzNlZ0JuoV1zdRGFVYqwkda5cAm/ZPepNLyzoTdRba5f7n5Ff4b2D1TS5vU6XYqKYBb2Jemt2VyLWb3NGXr/yzv4qp8swUcyC3kS1sroW8isaUOu3OSOXwDrrvjFnEVbQi0i6iBwQkUIRebiH538oIntFZLeIbBSRS0Oe84nIruBPVvdzjTmbdQU20Ngbv8LG/cdpa7fF20zPeg16EUkCFgO3AtOBhSIyvdthO4E0VZ0BZAK/DnmuVVVnBn/uiFDdJkGs2VOJy7ptetXW7ue9g9VOl2GiVDgt+llAoaoWq6oHyADmhR6gqu+qaktwcyswMbJlmkRU1djGjiN1+K3bplcugbXWfWPOIJygnwCUhmyXBfedyf3AWyHbw0QkR0S2isidPZ0gIg8Ej8mprrZWiQlYX3DcplSGya+wfu9xPF6/06WYKBTRwVgRuRdIA54K2X2pqqYB/wj8XkQ+0f08VV2iqmmqmjZ+/PhIlmRi2Fv51m1zLprcXrKLa5wuw0ShcIK+HJgUsj0xuK8LEbkJeAS4Q1U7b6mnquXBP4uBTcDV/ajXJIiTLR62FtVat805sO4bcybhBP12IFVEporIUGAB0GX2jIhcDfyRQMhXhewfKyIpwcfjgOuAvZEq3sSvDXuP47M5lefEr7A2vxKffTqabnoNelX1Ag8B64B9wDJVLRCRJ0WkYxbNU8AoYHm3aZSXAzkikge8C/xSVS3oTa/WFhyzbps+qGtpJ6ek1ukyTJRJDucgVV0DrOm279GQxzed4bwPgc/0p0CTeJrcXt47WG3dNn0gwXvfzJ52gdOlmChiV8aaqPPu/irafZbyfaEauPZArdvLhLCgN1Fnbb512/RHVaObvLJ6p8swUcSC3kSVtnYfG/cft26bfhBsfV3TlQW9iSrvHaymrd0u+ukPxbpvTFcW9Caq2GybyCitbWX/sUanyzBRwoLeRA2P18/6Auu2iRRbecp0sKA3UWNrcY2tlBQhgi2obk6xoDdR4y2bbRMxChRWNVFc3eR0KSYKWNCbqODzK2vzK63bJsJsvV0DFvQmSuSU1FLX0u50GXFFJLDerjEW9CYqvJV/zBYAjzBVyK9ooLS2pfeDTVyzoDeO8/uVVbsrbAHwAWK3LjYW9MZxO0vrONHkcbqMuOQSWLWnwukyjMMs6I3j1uw5hvXaDAy/Ql5pPRUnW50uxTjIgt44SjXYbeN0IXHOum8SmwW9cVReWT3HG9y9H2j6zCWw2i6eSmhhBb2IpIvIAREpFJGHe3j+hyKyV0R2i8hGEbk05Ln7RORQ8Oe+SBZvYt9beyqt22aA+RV2HKnjeEOb06UYh/Qa9CKSBCwGbgWmAwtFZHq3w3YCaao6A8gEfh0893zgMWA2MAt4TETGRq58E8sC3TaV1m0zCBRYZxdPJaxwWvSzgEJVLVZVD5ABzAs9QFXfVdWOybpbgYnBx7cAG1S1VlXrgA1AemRKN7Euv7yBchskHBQugdV28VTCCifoJwClIdtlwX1ncj/w1rmcKyIPiEiOiORUV1eHUZKJB2tscYxB41fYVlJLdaONhySiiA7Gisi9QBrw1Lmcp6pLVDVNVdPGjx8fyZJMlOqYbWMGjyqs32vdN4konKAvByaFbE8M7utCRG4CHgHuUFX3uZxrEs/eygZKa63bZjBZ903iCifotwOpIjJVRIYCC4Cs0ANE5GrgjwRCvirkqXXAXBEZGxyEnRvcZxLcKgucQedXyC6use6bBNRr0KuqF3iIQEDvA5apaoGIPCkidwQPewoYBSwXkV0ikhU8txb4KYEPi+3Ak8F9JoGpKlm7rNvGCaqw1sZGEk5yOAep6hpgTbd9j4Y8vuks5y4Flva1QBN/dpfV22wbh7gEsvIq+MZnpzhdihlEdmWsGXSrdlfYRVIO8SvklNRxrN4unkokFvRmUPn9Slae3dvGSYrdEiHRWNCbQbWztM7ubeOwQPeNTX5LJBb0ZlC9mWf3tnFax62LbeWpxGFBbwaNz6+8ad02UcO6bxKHBb0ZNNsO11LTbCtJRQMRbIprArGgN4Nm1e4KWwA8SqgGrk4uOdHsdClmEFjQm0Hh9flZvafSFgCPMm/mWas+EVjQm0HxfuEJTra0O12GCSHAyp3lqH36xj0LejMoXt9Zjsu6baKKAodPNFNQ0eB0KWaAWdCbAdfk9vJW/jH81nCMOgK8ttPm1Mc7C3oz4NYXHMPj9TtdhumBEvi25fXZ/5+BMGrUKKdLACzozSBYucO6baJZTbOHD4tqnC7DDCALejOgqhra2FJ0wrptophLAq36RLdw4ULmz5/PrFmzuPTSS1m9enWX5x9++GEWL17cuf3444+zaNEiAO68806uueYarrjiCpYsWXLaa5eUlHDllVd2bi9atIjHH38cgBdffJFZs2Yxc+ZMvvOd7+Dz+SL+u1nQmwGVlVdhUyqjnF8D6/e2eLxOl+KovLw8pk2bxrZt23jppZd44oknujw/f/58li1b1rm9bNky5s+fD8DSpUvJzc0lJyeHp59+mpqa8L4h7du3j1dffZUtW7awa9cukpKSeOmllyL3SwWFFfQiki4iB0SkUEQe7uH560Vkh4h4ReRr3Z7zBRcj6VyQxCSOlTvK7SKpGNDW7mfD3uNOl+GYtrY2qqureeyxxwCYPn06dXV1XY65+uqrqaqqoqKigry8PMaOHcukSYGVUp9++mmuuuoq5syZQ2lpKYcOHQrrfTdu3Ehubi7XXnstM2fOZOPGjRQXF0f2lyOMhUdEJAlYDNwMlAHbRSRLVfeGHHYU+Cbwv3t4iVZVnRmBWk2MOXS8kb2VNnUvFrgk8KE8b+YEp0txRH5+PqmpqQwbNgyAHTt2cNVVV5123N13301mZibHjh3rbM1v2rSJt99+m+zsbEaMGMENN9xAW1vX+/0nJyfj958a8O54XlW57777+MUvfjFQvxoQXot+FlCoqsWq6gEygHmhB6hqiaruBmzo3nR6fZf1+8YKv8L7h6oTdj3ZvLw8jh49SltbG83NzTz22GP827/922nHzZ8/n4yMDDIzM7n77rsBqK+vZ+zYsYwYMYL9+/ezdevW08678MILqaqqoqamBrfbzapVqwC48cYbyczMpKoqsNR2bW0tR44cifjvF07QTwBKQ7bLgvvCNUxEckRkq4jceU7VmZjl9ysrd1jQxxK/Ju4tEfLy8rjrrruYPXs21157Lf/yL//Cddddd9pxV1xxBY2NjUyYMIGLL74YgPT0dLxeL5dffjkPP/wwc+bMOe28IUOG8OijjzJr1ixuvvlmPv3pTwOBLqKf/exnzJ07lxkzZnDzzTdTWRn5u4pKb5c/B/vc01X128HtbwCzVfWhHo79K7BKVTND9k1Q1XIRmQa8A9yoqkXdznsAeABg8uTJ1wzEJ5oZXB8cOsG9f/7I6TLMOXAJfPLjo1j3g+uRBBtY+cIXvsCSJUu47LLLnC6lz0QkV1XTenounBZ9OTApZHticF9YVLU8+GcxsAm4uodjlqhqmqqmjR8/PtyXNlFsWU6pzZ2PMX6Fg8ebyC9PvHGVoqIiUlNTnS5jwIQT9NuBVBGZKiJDgQVAWLNnRGSsiKQEH48DrgP2nv0sE+vqW9p5K7/S5s7HIJHAh3SiKSsrw+WK39nmvf5mquoFHgLWAfuAZapaICJPisgdACJyrYiUAXcDfxSRguDplwM5IpIHvAv8sttsHROH3sgrp91nKR+LVGHlzjLa2iN/0Y5xTq/TKwFUdQ2wptu+R0MebyfQpdP9vA+Bz/SzRhNjXtl2FJdgLfoY1ez2sa7gWFxPtfT5fGzevJnZs2czcuRIp8sZcPH7XcU4Ir+8nn2VjRbyMcwlkLEtvrtv1q1bR3p6Oueffz6f+9znWLNmTe8nxTALehNRy3NKsTHY2OZXyC6uobS2xelSBkxmZibt7e14PB6ys7PJzMzs/aQYZkFvIqat3cfKHeVYYz4+LI/TQVlVJSvr1HyS0aNH87Wvfe0sZ8Q+C3oTMev3HqfRndg3xoonr+aU4ovDPrj8/Pwutyhwu9188YtfdLCigWdBbyImIzgIa+LD8QY37x+qdrqMiMvKyqK9/dT6xbNmzWL48OEOVjTwLOhNRBRVN/FhUY0NwsYRl8AL2fF3lXpGRgYejweAESNGsHDhQocrGngW9CYiXsg+YoOwccav8M7+qrgalK2pqeHgwYOd236/n9tuu83BigaHBb3pt2a3l2U5pTYIG4cUeOmjo06XETFr165l6NChndsXXXQRkydPdrCiwWFBb/rt9V3ltHjsSsp49fK2I3Fzpeyrr75KU1MTAElJSXE/26aDBb3pF1Xlr1tKbBA2jjW0elm9O/K3zh1sXq+XjRs3dm6PGDGCr3zlKw5WNHgs6E2/bC+p41BVkw3CxjGXwPPZJU6X0W/Z2dkkJSV1bvv9fmbPnu1gRYPHgt70y/PZ1pqPd36F3WX15JWedLqUfnnttddobm7u3J47d26X4I9nFvSmz6oa2li755i15hOAS+BvMT7VcsWKFZ3rtp533nncc889Dlc0eCzoTZ+9vO0ovl5WKDPxwa+QlVdObbPH6VL6pKSkpHNdVghcDXvLLbc4WNHgsqA3fdLW7uOvH5Y4XYYZRO0+jdkLqFatWtVlecTLL7+csWPHOljR4LKgN32SmVvGyZb23g80cWXplsO0xuBU2oyMDFpbWwFISUlhwYIFDlc0uMIKehFJF5EDIlIoIg/38Pz1IrJDRLzBxcRDn7tPRA4Ff+6LVOHGOT6/8tzmIhJs/WgD1Le2k5kbW3e1bG5uJicnp3M7KSmJO+64w8GKBl+vQS8iScBi4FZgOrBQRKZ3O+wo8E3g5W7nng88BswGZgGPiUjifF+KU+sKjlFW14p1zyceAZ7bXIzX53e6lLC98847pKSkdG6PHDmSyy+/3MGKBl84LfpZQKGqFquqB8gA5oUeoKolqrob6P5//xZgg6rWqmodsAFIj0DdxiGqyh82FdmUygSlQPnJVtYWHHO6lLBlZmbS0NAAgIgwb968Lv31iSCcoJ8AhH5XKwvuC0dY54rIAyKSIyI51dXxd1vUeLK1uJY95fU2pTKBuQT+sKkIjYGvdKrKqlWrOrfPO+88vvrVrzpYkTOiYjBWVZeoapqqpo0fP97pcsxZPLfZWvOJzq9QUNFAdlGN06X0avfu3bjd7s5tt9vNDTfc4FxBDgkn6MuBSSHbE4P7wtGfc02U2X+sgc0Hq601b3AJPLupyOkyevXGG290WWTkc5/7HMOGDXOwImeEE/TbgVQRmSoiQ4EFQFYv53RYB8wVkbHBQdi5wX0mBj2zsdBa8wYItOo/KDzBrii/LcKrr77aZZGR+fPnO1yRM3oNelX1Ag8RCOh9wDJVLRCRJ0XkDgARuVZEyoC7gT+KSEHw3FrgpwQ+LLYDTwb3mRizt6KB1XsqrTVvOrkEFq074HQZZ1RdXU1R0alvHT6fj9tvv93BipyTHM5BqroGWNNt36Mhj7cT6Jbp6dylwNJ+1GiiwG83HMAlWNCbTh2t+o+Ka5g97QKnyznN2rVrGTJkSGcf/YQJE5gwIdx5JPElKgZjTXTbVXqSt/dVWcib07gEFq0/EJUzcDIyMjoXGUlOTubuu+92uCLnWNCbXv1m/QHrmzc98mtgTYIthdE1A6e9vZ1NmzZ1bg8fPpw777zTuYIcZkFvzmrb4VreP3TCWvPmjFwCT63bH1Wt+g8//PC0e81fe+21DlXjPAt6c0aqylPr9ltr3pyVXyGvrJ539lf1fvAgWblyZZdFRm655ZaEWWSkJxb05ozeO3SC7SV11po3vXIJ/GrtfnxR8pdl5cqVXRYZSeT+ebCgN2fQ7vPzRFaBteZNWPwKB4838ep25+9sWVxcTE3NqTEDt9vN3LlzHazIeRb0pkd/yz5C8Ylma82bsAnwy7X7qHd4nYLQe9sAXHnllYwZM8ahaqKDBb05TU2Tm99uOIA15s25UKCh1cvv3j7oaB2vvPJK5yIjw4YNS7hFRnpiQW9Os2j9AVrcPqwxb/rib9klHDze6Mh7NzU1sWPHjs5tl8vFl7/8ZUdqiSYW9KaLPWX1ZGwrtZA3/fJ4VoEj0y3ffvvtLouMnHfeeVx22WWDXke0saA3nVSVx7LybYlA0y9+hQ+LalhXcHzQ33v58uU0Nga+TYgId955Z8ItMtITC3rTKWN7KTuOnrQBWNNvLoEn3iygoW3wBmZVldWrV3duJ+oiIz2xoDcAlNW18OSbe20A1kSECBxvaOPnq/YN2nvu3LkTn8/Xue3xeLj++usH7f2jmQW9QVX5j8zduL02AGsiwyXCd77wCV7NKeXdA4Nzxewbb7zRZTWp6667rkt/fSKzoDe8vO0oHxbVWJeNiagf3JTKpy4cxU9W7KG+deC7cJYtW9a5mtTIkSNtWmUIC/oEV1rbws9W7bMuGxNxKclJLLr7Kqqb3Pxs1d4Bfa/jx49TXFzcue31erntttsG9D1jSVhBLyLpInJARApF5OEenk8RkVeDz38kIlOC+6eISKuI7Ar+PBfZ8k1/+P3Kj1dYl40ZODMmjuHBL0xjeW4Z7+wfuFk4b731FkOGDOncnjx5MhdffPGAvV+s6TXoRSQJWAzcCkwHForI9G6H3Q/Uqeongd8Bvwp5rkhVZwZ/HoxQ3SYCnnmn0LpszID73o2pfPqi8/jRsjzK6loG5D0yMjI671Y5ZMiQhL+JWXfhtOhnAYWqWqyqHiADmNftmHnA88HHmcCNYpNXo9rmg9X83uFL1U1iSElO4g/3XoPXp3z3pR24vb7eTzoHHo+HzZs3n3q/lJSEXmSkJ+EE/QQg9JZ0ZcF9PR4TXEy8HuhYRHKqiOwUkc0i8vme3kBEHhCRHBHJqa6uPqdfwJy7sroW/vXlHXZhlBk0U8eN5Df3XEVeWT1PvBnZ/voPPviAoUOHdm67XC6uueaaiL5HrBvowdhKYLKqXg38EHhZREZ3P0hVl6hqmqqmjR8/foBLSmxt7T4efPAN/88AAA1KSURBVCGXJrfXumzMoJp7xUU8+IVP8PJHR8nMLYvY665cubJzbViA9PR0XC6bZxIqnP8a5cCkkO2JwX09HiMiycDHgBpVdatqDYCq5gJFwKf6W7TpG1Xl8awC8isaLOSNI/733E/x2WkX8Mhre8gvr4/Ia3ZfZOSee+6JyOvGk3CCfjuQKiJTRWQosADI6nZMFnBf8PHXgHdUVUVkfHAwFxGZBqQCxRhHPL2xkIwoWBjCJK7kJBfP/OPVjBuVwjf/sp0jNc29n3QWhw4d4uTJk53bbrebm2++ub9lxp1egz7Y5/4QsA7YByxT1QIReVJE7gge9mfgAhEpJNBF0zEF83pgt4jsIjBI+6Cq1kb6lzC9e2HrEcfvE24MwLhRKTz/rVn4/H6+8edtVDW29fm1Vq1a1eUumTNmzGD06NN6hxNecjgHqeoaYE23fY+GPG4DTpvPpKorgBX9rNH00+rdlTz6er7TZRjT6ZMfH8Vf/nkW//j/tnLf0u28+p05jB42pPcTu8nIyKCtLfBBMWzYMBYuXBjpUuOCjVjEuQ8OneB7GTudLsOY08ycNIY/fuMaCqsa+fbzObS1n9u0y8bGRnbt2tW5LSK2yMgZWNDHsQ17j/PPf92GqtqVryYqfT51PL+9ZybbS2r5pz9vO6d74mzYsKHLTcvGjBlDamrqQJQZ8yzo49TynFK+80IOXr/aDBsT1b581SU8s/BqdpbWsWDJ1rD77EMXGXG5XHzlK18ZyDJjmgV9HFryXhH/nrkbVXBgNTdjztntMy5h6Tev5UhNM1/7Q3avs3H8fj9r1pwaNhw1ahR33XXXQJcZsyzo44jH6+fxrAL+a81+AOuuMTHl86njeenbs2loa+erf8hme8mZJ+jt2LGjc+48BG6D8PnP93jhvcGCPm5UnGzl7j9+yF8/LHG6FGP67OrJY8l88LOMSkliwZKtLHmvqMdFxl9//fUui4xcf/31XW6DYLqyoI8Dmw5Ukf7f77GnLDJXGhrjpE9+/Dyy/vXvmTv9Qv5rzX7mfn8RF154Ed/61rdYvXo1ra2tLF++vMsiI/Pnz3e46ugW1jx6E52a3F5+s/4Af91Sggg26GrixuhhQ3j263/H0i0l/GxFEyfqTvKXv/yFFStW4Ha7u7Ty29vbbZGRXliLPkatLzjGlxZt4i9bSlAs5E38ERHu//upZP5gLlNu/ickOYWGhgbcbjcej6fzOL/fz6JFi9iyZUuXxcHNKdJT/5eT0tLSNCcnx+kyolbJiWb+a80+1u89jsta8SZKDUkSDv38HyL2evVNzUyYMInmhroen09KSmLEiBH4/X7uuusunn/+eRJtSQwRyVXVtJ6esxZ9jDha08K/L8/jS7/ZxIZ9gSXZLORNovjYqJE8+8zvGTFiZI/P+3w+3G43fr+fyy67LOFCvjcW9FFuX2UDP87czRcXbSJzRxl+mxtvEtS9997LxRdfdPoT4mJIyjAWLPw6hw8f5pFHHhn84qKcDcZGobZ2H2v2VPLC1iPsPHoSwebEG+NyuXj22We56667OteHTRk2nNFTZzDk779F7sWX8kx2FV+fPZzLL7Y7WIayoI8Sbe0+Nh+sZm3+MdbvPUaz24cr+O3TQt6YgLlz5zJjxgxyc3OZPn06zz77LHPmzGFn6Ule2nqU5TllvLj1KJdfPJpbr7yI9CsvIvXjoxK+K8cGYx3i9ysHqxrJLqohu6iGzQercXv9NsBq4kKkB2NDHT58mP3795Oenn5agJ9s8fDaznJW764k92gdqjBt/EiuTx3PnGkXMGfa+YwZEZ8XVp1tMNaCfhCoKscb3OSX15NfUU9+eT3bS+o679Rn4W7izUAGfbiqGtpYt/c46wuOsb2klrZ2PyJw2YXnMXPSGK6Y8DGuvGQ0l188mmFDkhytNRLOFvRhdd2ISDrw30AS8CdV/WW351OAvwHXADXAfFUtCT73E+B+wAd8T1XX9fH3iGpur49j9W1UnGyjsr6VsrpWDp9oprCqieLqJpo9p+b3dg92C3ljIu/jo4fxjTmX8o05l+Lx+skrO0l2UQ3bDteytuBY57KaIjBhzHCmjR/FtHEjmXLBCC4eM5xLPjaci8cM44KRQ2O+66fXoA+u+boYuBkoA7aLSJaq7g057H6gTlU/KSILgF8B80VkOoE1Zq8ALgHeFpFPqapjVzWoKj6/4g3+eLx+2n1+PF4/bq8ft9dHW3vgz1aPjxaPjxaPl2a3j8Y2Lw1t7TS0tlPf2k5Ns4eqxjZqmzxdgrxDkgi+Hr4xWbAbM7iGJru4dsr5XDvlfCCQA+UnW8kvb2BfZQOHTzRTfKKJ3JLa0/4tJ7uE80cO5YJRKYwbNZQxI4Yyelgyo4cPYfSwIYxKSWLE0GRGpiQxfGgyw5JdDBuSxLAhSaQkuxia7GJIkouhSS6GJAtJLmGIy4XLNXgfHuG06GcBhapaDCAiGcA8IDTo5wGPBx9nAv8jgY/AeUCGqrqBw8E1ZWcB2ZEp/5TaZg+3/O49fKr4O3784A8Gu6riU/D1M2WTRHCFTEoVBBEYPiQJl4DLJbhEcAkx3wowpq+GJEX3330RYeLYEUwcO4L0K09N2VRVapo9VJ5so6K+lcqTrVQ1uqlp8lDT7OZEk4eyutbOxp63H3kiEvgQcUkg/JNEuGrSGF789uxI/IpdhBP0E4DSkO0yoHslnceoqldE6oELgvu3djt3Qvc3EJEHgAcAJk+eHG7tXQxNdnHT9AsDYRsStEmuwE/HvuQkF0NcQlKSkOyS4Kds4NN2aLKLlOQkhg0J/DliaBIjg5/WI4YmMSolmeQku/TAmHglIowblcK4USl8ZuLHznqsqtLa7qPZfepbf4vH29kj0PFnu8+Px3eq98DnV7w+xev3BxYG8gcaoz5VJowZPiC/V1RMr1TVJcASCAzG9uU1RqUk84u7PhPRuowx5kxEJNgITAZSej3eSeE0T8uBSSHbE4P7ejxGRJKBjxEYlA3nXGOMMQMonKDfDqSKyFQRGUpgcDWr2zFZwH3Bx18D3tHAvM0sYIGIpIjIVCAV2BaZ0o0xxoSj166bYJ/7Q8A6AtMrl6pqgYg8CeSoahbwZ+CF4GBrLYEPA4LHLSMwcOsFvuvkjBtjjElEdsGUMcbEAbtNsTHGJDALemOMiXMW9MYYE+cs6I0xJs5F3WCsiFQDR/rxEuOAExEqJ5KitS6I3tqitS6I3tqitS6I3tqitS44t9ouVdXxPT0RdUHfXyKSc6aRZydFa10QvbVFa10QvbVFa10QvbVFa10Qudqs68YYY+KcBb0xxsS5eAz6JU4XcAbRWhdEb23RWhdEb23RWhdEb23RWhdEqLa466M3xhjTVTy26I0xxoSwoDfGmDgXt0EvIj8SERWRcU7X0kFEfioiu0Vkl4isF5FLnK4JQESeEpH9wdpeE5ExTtfUQUTuFpECEfGLiONT4EQkXUQOiEihiDzsdD0dRGSpiFSJSL7TtYQSkUki8q6I7A3+f/y+0zV1EJFhIrJNRPKCtT3hdE2hRCRJRHaKyKr+vlZcBr2ITALmAkedrqWbp1R1hqrOBFYBjzpdUNAG4EpVnQEcBH7icD2h8oG7gPecLkREkoDFwK3AdGChiEx3tqpOfwXSnS6iB17gR6o6HZgDfDeK/pu5gS+p6lXATCBdROY4XFOo7wP7IvFCcRn0wO+A/wCiaqRZVRtCNkcSJfWp6npV9QY3txJYCSwqqOo+VT3gdB1Bs4BCVS1WVQ+QAcxzuCYAVPU9AmtBRBVVrVTVHcHHjQSC67R1o52gAU3BzSHBn6j4NykiE4HbgD9F4vXiLuhFZB5Qrqp5TtfSExH5uYiUAl8nelr0ob4FvOV0EVFqAlAast3jYvemZyIyBbga+MjZSk4Jdo/sAqqADaoaLbX9nkBj1R+JF4uKxcHPlYi8DVzUw1OPAP+HQLeNI85Wm6q+oaqPAI+IyE+Ah4DHoqGu4DGPEPiq/dJg1HQutZnYJiKjgBXAD7p9s3VUcMW7mcFxqddE5EpVdXScQ0RuB6pUNVdEbojEa8Zk0KvqTT3tF5HPAFOBPBGBQBfEDhGZparHnKytBy8BaxikoO+tLhH5JnA7cKMO8sUV5/DfzGm22H0fiMgQAiH/kqqudLqenqjqSRF5l8A4h9MD2tcBd4jIPwDDgNEi8qKq3tvXF4yrrhtV3aOqH1fVKao6hcBX678brJDvjYikhmzOA/Y7VUsoEUkn8DXxDlVtcbqeKLYdSBWRqSIylMDayFkO1xTVJNDi+jOwT1V/63Q9oURkfMcMMxEZDtxMFPybVNWfqOrEYIYtAN7pT8hDnAV9DPiliOSLyG4C3UvRMtXsf4DzgA3BqZ/POV1QBxH5ioiUAZ8FVovIOqdqCQ5YPwSsIzCouExVC5yqJ5SIvAJkA5eJSJmI3O90TUHXAd8AvhT8u7Ur2FKNBhcD7wb/PW4n0Eff76mM0chugWCMMXHOWvTGGBPnLOiNMSbOWdAbY0ycs6A3xpg4Z0FvjDFxzoLeGGPinAW9McbEuf8PdS5BKVaaq38AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "markdown", "source": [ "## Your Turn\n", "\n", "1. Explain the difference between standard error and confidence intervals.\n", "2. Use the workout data and graph the average calories by workout type and include the 95% confidence interval." ], "metadata": { "id": "cGRTC-tVnmHR" } }, { "cell_type": "code", "source": [ "" ], "metadata": { "id": "39r774BroJvy" }, "execution_count": null, "outputs": [] } ] }